RFL-CDNet: Towards Accurate Change Detection via Richer Feature Learning
- URL: http://arxiv.org/abs/2404.17765v1
- Date: Sat, 27 Apr 2024 03:07:07 GMT
- Title: RFL-CDNet: Towards Accurate Change Detection via Richer Feature Learning
- Authors: Yuhang Gan, Wenjie Xuan, Hang Chen, Juhua Liu, Bo Du,
- Abstract summary: RFL-CDNet is a novel framework that utilizes richer feature learning to boost change detection performance.
C2FG module aims to seamlessly integrate the side prediction from the previous coarse-scale into the current fine-scale prediction.
LF module assumes that the contribution of each stage and each spatial location is independent, thus designing a learnable module to fuse multiple predictions.
- Score: 39.3740222598949
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Change Detection is a crucial but extremely challenging task of remote sensing image analysis, and much progress has been made with the rapid development of deep learning. However, most existing deep learning-based change detection methods mainly focus on intricate feature extraction and multi-scale feature fusion, while ignoring the insufficient utilization of features in the intermediate stages, thus resulting in sub-optimal results. To this end, we propose a novel framework, named RFL-CDNet, that utilizes richer feature learning to boost change detection performance. Specifically, we first introduce deep multiple supervision to enhance intermediate representations, thus unleashing the potential of backbone feature extractor at each stage. Furthermore, we design the Coarse-To-Fine Guiding (C2FG) module and the Learnable Fusion (LF) module to further improve feature learning and obtain more discriminative feature representations. The C2FG module aims to seamlessly integrate the side prediction from the previous coarse-scale into the current fine-scale prediction in a coarse-to-fine manner, while LF module assumes that the contribution of each stage and each spatial location is independent, thus designing a learnable module to fuse multiple predictions. Experiments on several benchmark datasets show that our proposed RFL-CDNet achieves state-of-the-art performance on WHU cultivated land dataset and CDD dataset, and the second-best performance on WHU building dataset. The source code and models are publicly available at https://github.com/Hhaizee/RFL-CDNet.
Related papers
- GMFL-Net: A Global Multi-geometric Feature Learning Network for Repetitive Action Counting [4.117416395116726]
We propose a simple but efficient Global Multi-geometric Feature Learning Network (GMFL-Net)
Specifically, we design a MIA-Module that aims to improve information representation by fusing multi-geometric features.
We also design a GBFL-Module that enhances the inter-dependencies between point-wise and channel-wise elements.
arXiv Detail & Related papers (2024-08-31T02:18:26Z) - Relating CNN-Transformer Fusion Network for Change Detection [23.025190360146635]
RCTNet introduces an early fusion backbone to exploit both spatial and temporal features.
Experiments demonstrate RCTNet's clear superiority over traditional RS image CD methods.
arXiv Detail & Related papers (2024-07-03T14:58:40Z) - C2F-SemiCD: A Coarse-to-Fine Semi-Supervised Change Detection Method Based on Consistency Regularization in High-Resolution Remote Sensing Images [6.191219008656562]
A high-precision feature extraction model is crucial for change detection (CD)
We propose a coarse-to-fine semi-supervised CD method based on consistency regularization (C2F-SemiCD)
We verify the significant effectiveness and efficiency of the proposed C2F-SemiCD method.
arXiv Detail & Related papers (2024-04-22T02:34:50Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
We propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions.
Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks.
We also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings.
arXiv Detail & Related papers (2024-03-26T17:46:25Z) - Distributed Gradient Descent for Functional Learning [9.81463654618448]
We propose a novel distributed gradient descent functional learning (DGDFL) algorithm to tackle functional data across numerous local machines (processors) in the framework of reproducing kernel Hilbert space.
Under mild conditions, confidence-based optimal learning rates of DGDFL are obtained without the saturation boundary on the regularity index suffered in previous works in functional regression.
arXiv Detail & Related papers (2023-05-12T12:15:42Z) - Deep Metric Learning for Unsupervised Remote Sensing Change Detection [60.89777029184023]
Remote Sensing Change Detection (RS-CD) aims to detect relevant changes from Multi-Temporal Remote Sensing Images (MT-RSIs)
The performance of existing RS-CD methods is attributed to training on large annotated datasets.
This paper proposes an unsupervised CD method based on deep metric learning that can deal with both of these issues.
arXiv Detail & Related papers (2023-03-16T17:52:45Z) - Dual Swin-Transformer based Mutual Interactive Network for RGB-D Salient
Object Detection [67.33924278729903]
In this work, we propose Dual Swin-Transformer based Mutual Interactive Network.
We adopt Swin-Transformer as the feature extractor for both RGB and depth modality to model the long-range dependencies in visual inputs.
Comprehensive experiments on five standard RGB-D SOD benchmark datasets demonstrate the superiority of the proposed DTMINet method.
arXiv Detail & Related papers (2022-06-07T08:35:41Z) - FCCDN: Feature Constraint Network for VHR Image Change Detection [12.670734830806591]
We propose a feature constraint change detection network (FCCDN) for change detection.
We constrain features both on bi-temporal feature extraction and feature fusion.
We achieve state-of-the-art performance on two building change detection datasets.
arXiv Detail & Related papers (2021-05-23T06:13:47Z) - Self-Supervised Representation Learning for RGB-D Salient Object
Detection [93.17479956795862]
We use Self-Supervised Representation Learning to design two pretext tasks: the cross-modal auto-encoder and the depth-contour estimation.
Our pretext tasks require only a few and un RGB-D datasets to perform pre-training, which make the network capture rich semantic contexts.
For the inherent problem of cross-modal fusion in RGB-D SOD, we propose a multi-path fusion module.
arXiv Detail & Related papers (2021-01-29T09:16:06Z) - Bifurcated backbone strategy for RGB-D salient object detection [168.19708737906618]
We leverage the inherent multi-modal and multi-level nature of RGB-D salient object detection to devise a novel cascaded refinement network.
Our architecture, named Bifurcated Backbone Strategy Network (BBS-Net), is simple, efficient, and backbone-independent.
arXiv Detail & Related papers (2020-07-06T13:01:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.