Dynamic Against Dynamic: An Open-set Self-learning Framework
- URL: http://arxiv.org/abs/2404.17830v2
- Date: Fri, 3 May 2024 02:29:09 GMT
- Title: Dynamic Against Dynamic: An Open-set Self-learning Framework
- Authors: Haifeng Yang, Chuanxing Geng, Pong C. Yuen, Songcan Chen,
- Abstract summary: In open-set recognition, existing methods generally learn statically fixed decision boundaries using known classes to reject unknown classes.
This paper proposes a novel dynamic against dynamic idea, i.e., dynamic method against dynamic changing open-set world, where an open-set self-learning framework is correspondingly developed.
- Score: 44.81030487874529
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In open-set recognition, existing methods generally learn statically fixed decision boundaries using known classes to reject unknown classes. Though they have achieved promising results, such decision boundaries are evidently insufficient for universal unknown classes in dynamic and open scenarios as they can potentially appear at any position in the feature space. Moreover, these methods just simply reject unknown class samples during testing without any effective utilization for them. In fact, such samples completely can constitute the true instantiated representation of the unknown classes to further enhance the model's performance. To address these issues, this paper proposes a novel dynamic against dynamic idea, i.e., dynamic method against dynamic changing open-set world, where an open-set self-learning (OSSL) framework is correspondingly developed. OSSL starts with a good closed-set classifier trained by known classes and utilizes available test samples for model adaptation during testing, thus gaining the adaptability to changing data distributions. In particular, a novel self-matching module is designed for OSSL, which can achieve the adaptation in automatically identifying known class samples while rejecting unknown class samples which are further utilized to enhance the discriminability of the model as the instantiated representation of unknown classes. Our method establishes new performance milestones respectively in almost all standard and cross-data benchmarks.
Related papers
- Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
Few-shot class-incremental learning (FSCIL) confronts the challenge of integrating new classes into a model with minimal training samples.
Traditional methods widely adopt static adaptation relying on a fixed parameter space to learn from data that arrive sequentially.
We propose a dual selective SSM projector that dynamically adjusts the projection parameters based on the intermediate features for dynamic adaptation.
arXiv Detail & Related papers (2024-07-08T17:09:39Z) - Informed Decision-Making through Advancements in Open Set Recognition and Unknown Sample Detection [0.0]
Open set recognition (OSR) aims to bring classification tasks in a situation that is more like reality.
This study provides an algorithm exploring a new representation of feature space to improve classification in OSR tasks.
arXiv Detail & Related papers (2024-05-09T15:15:34Z) - Semi-Supervised Class-Agnostic Motion Prediction with Pseudo Label
Regeneration and BEVMix [59.55173022987071]
We study the potential of semi-supervised learning for class-agnostic motion prediction.
Our framework adopts a consistency-based self-training paradigm, enabling the model to learn from unlabeled data.
Our method exhibits comparable performance to weakly and some fully supervised methods.
arXiv Detail & Related papers (2023-12-13T09:32:50Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
We study a practical problem of Domain Generalization under Category Shift (DGCS)
It aims to simultaneously detect unknown-class samples and classify known-class samples in the target domains.
Compared to prior DG works, we face two new challenges: 1) how to learn the concept of unknown'' during training with only source known-class samples, and 2) how to adapt the source-trained model to unseen environments.
arXiv Detail & Related papers (2023-10-07T07:53:12Z) - Self-Paced Learning for Open-Set Domain Adaptation [50.620824701934]
Traditional domain adaptation methods presume that the classes in the source and target domains are identical.
Open-set domain adaptation (OSDA) addresses this limitation by allowing previously unseen classes in the target domain.
We propose a novel framework based on self-paced learning to distinguish common and unknown class samples.
arXiv Detail & Related papers (2023-03-10T14:11:09Z) - Open-Set Recognition with Gradient-Based Representations [16.80077149399317]
We propose to utilize gradient-based representations to train an unknown detector with instances of known classes only.
We show that our gradient-based approach outperforms state-of-the-art methods by up to 11.6% in open-set classification.
arXiv Detail & Related papers (2022-06-16T14:54:12Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
We propose Conditional Probabilistic Generative Models (CPGM) for open set recognition.
CPGM can detect unknown samples but also classify known classes by forcing different latent features to approximate conditional Gaussian distributions.
Experiment results on multiple benchmark datasets reveal that the proposed method significantly outperforms the baselines.
arXiv Detail & Related papers (2020-08-12T06:23:49Z) - Conditional Gaussian Distribution Learning for Open Set Recognition [10.90687687505665]
We propose Conditional Gaussian Distribution Learning (CGDL) for open set recognition.
In addition to detecting unknown samples, this method can also classify known samples by forcing different latent features to approximate different Gaussian models.
Experiments on several standard image reveal that the proposed method significantly outperforms the baseline method and achieves new state-of-the-art results.
arXiv Detail & Related papers (2020-03-19T14:32:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.