VANER: Leveraging Large Language Model for Versatile and Adaptive Biomedical Named Entity Recognition
- URL: http://arxiv.org/abs/2404.17835v1
- Date: Sat, 27 Apr 2024 09:00:39 GMT
- Title: VANER: Leveraging Large Language Model for Versatile and Adaptive Biomedical Named Entity Recognition
- Authors: Junyi Biana, Weiqi Zhai, Xiaodi Huang, Jiaxuan Zheng, Shanfeng Zhu,
- Abstract summary: Large language models (LLMs) can be used to train a model capable of extracting various types of entities.
In this paper, we utilize the open-sourced LLM LLaMA2 as the backbone model, and design specific instructions to distinguish between different types of entities and datasets.
Our model VANER, trained with a small partition of parameters, significantly outperforms previous LLMs-based models and, for the first time, as a model based on LLM, surpasses the majority of conventional state-of-the-art BioNER systems.
- Score: 3.4923338594757674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prevalent solution for BioNER involves using representation learning techniques coupled with sequence labeling. However, such methods are inherently task-specific, demonstrate poor generalizability, and often require dedicated model for each dataset. To leverage the versatile capabilities of recently remarkable large language models (LLMs), several endeavors have explored generative approaches to entity extraction. Yet, these approaches often fall short of the effectiveness of previouly sequence labeling approaches. In this paper, we utilize the open-sourced LLM LLaMA2 as the backbone model, and design specific instructions to distinguish between different types of entities and datasets. By combining the LLM's understanding of instructions with sequence labeling techniques, we use mix of datasets to train a model capable of extracting various types of entities. Given that the backbone LLMs lacks specialized medical knowledge, we also integrate external entity knowledge bases and employ instruction tuning to compel the model to densely recognize carefully curated entities. Our model VANER, trained with a small partition of parameters, significantly outperforms previous LLMs-based models and, for the first time, as a model based on LLM, surpasses the majority of conventional state-of-the-art BioNER systems, achieving the highest F1 scores across three datasets.
Related papers
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Model-GLUE: Democratized LLM Scaling for A Large Model Zoo in the Wild [84.57103623507082]
This paper introduces Model-GLUE, a holistic Large Language Models scaling guideline.
Our work starts with a benchmarking of existing LLM scaling techniques, especially selective merging, and variants of mixture.
Our methodology involves the clustering of mergeable models and optimal merging strategy selection, and the integration of clusters through a model mixture.
arXiv Detail & Related papers (2024-10-07T15:55:55Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Model Merging and Safety Alignment: One Bad Model Spoils the Bunch [70.614652904151]
Merging Large Language Models (LLMs) is a cost-effective technique for combining multiple expert LLMs into a single versatile model.
Current approaches often overlook the importance of safety alignment during merging, leading to highly misaligned models.
We evaluate several popular model merging techniques, demonstrating that existing methods do not only transfer domain expertise but also propagate misalignment.
arXiv Detail & Related papers (2024-06-20T17:59:58Z) - Learning to Decode Collaboratively with Multiple Language Models [37.31339648499042]
We propose a method to teach multiple large language models (LLM) to collaborate by interleaving their generations at the token level.
Token-level collaboration during decoding allows for a fusion of each model's expertise in a manner tailored to the specific task at hand.
arXiv Detail & Related papers (2024-03-06T17:23:28Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
We propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model.
Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters.
arXiv Detail & Related papers (2024-02-20T06:38:10Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
We propose LLMaAA, which takes large language models as annotators and puts them into an active learning loop to determine what to annotate efficiently.
We conduct experiments and analysis on two classic NLP tasks, named entity recognition and relation extraction.
With LLMaAA, task-specific models trained from LLM-generated labels can outperform the teacher within only hundreds of annotated examples.
arXiv Detail & Related papers (2023-10-30T14:54:15Z) - Local Large Language Models for Complex Structured Medical Tasks [0.0]
This paper introduces an approach that combines the language reasoning capabilities of large language models with the benefits of local training to tackle complex, domain-specific tasks.
Specifically, the authors demonstrate their approach by extracting structured condition codes from pathology reports.
arXiv Detail & Related papers (2023-08-03T12:36:13Z) - Generalized Multimodal ELBO [11.602089225841631]
Multiple data types naturally co-occur when describing real-world phenomena and learning from them is a long-standing goal in machine learning research.
Existing self-supervised generative models approximating an ELBO are not able to fulfill all desired requirements of multimodal models.
We propose a new, generalized ELBO formulation for multimodal data that overcomes these limitations.
arXiv Detail & Related papers (2021-05-06T07:05:00Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.