Advancing Single- and Multi-task Text Classification through Large Language Model Fine-tuning
- URL: http://arxiv.org/abs/2412.08587v1
- Date: Wed, 11 Dec 2024 18:06:44 GMT
- Title: Advancing Single- and Multi-task Text Classification through Large Language Model Fine-tuning
- Authors: Hang Zhao, Qile P. Chen, Yijing Barry Zhang, Gang Yang,
- Abstract summary: Large language models (LLMs) have been widely used for text classification tasks.
This study employed a diverse range of models and methods, varying in size and architecture, and including both fine-tuned and pre-trained approaches.
We first assessed the performances of these LLMs on the 20 Newsgroups (20NG) and datasets, comparing them to encoder-only RoBERTa models.
We explored the multi-task capabilities of both model types by combining multiple classification tasks, including intent detection and slot-filling, into a single model using data from both datasets.
- Score: 29.782832197148487
- License:
- Abstract: Both encoder-only models (e.g., BERT, RoBERTa) and large language models (LLMs, e.g., Llama3) have been widely used for text classification tasks. However, there is a lack of systematic studies comparing the performance of encoder-based models and LLMs in text classification, particularly when fine-tuning is involved. This study employed a diverse range of models and methods, varying in size and architecture, and including both fine-tuned and pre-trained approaches. We first assessed the performances of these LLMs on the 20 Newsgroups (20NG) and MASSIVE datasets, comparing them to encoder-only RoBERTa models. Additionally, we explored the multi-task capabilities of both model types by combining multiple classification tasks, including intent detection and slot-filling, into a single model using data from both datasets. Our results indicate that fully fine-tuned Llama3-70B models outperform RoBERTa-large and other decoder LLMs across various classification tasks and datasets. Moreover, the consolidated multi-task fine-tuned LLMs matched the performance of dual-model setups in both tasks across both datasets. Overall, our study provides a comprehensive benchmark of encoder-only and LLM models on text classification tasks and demonstrates a method to combine two or more fully fine-tuned decoder LLMs for reduced latency and equivalent performance.
Related papers
- VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks [60.5257456681402]
We study the potential for building universal embeddings capable of handling a wide range of downstream tasks.
We build a series of VLM2Vec models on SoTA VLMs like Phi-3.5-V, LLaVA-1.6 and evaluate them on MMEB's evaluation split.
Our results show that VLM2Vec achieves an absolute average improvement of 10% to 20% over existing multimodal embedding models.
arXiv Detail & Related papers (2024-10-07T16:14:05Z) - Model-GLUE: Democratized LLM Scaling for A Large Model Zoo in the Wild [84.57103623507082]
This paper introduces Model-GLUE, a holistic Large Language Models scaling guideline.
We benchmark existing scaling techniques, especially selective merging, and variants of mixture.
We then formulate an optimal strategy for the selection and aggregation of a heterogeneous model zoo.
Our methodology involves the clustering of mergeable models and optimal merging strategy selection, and the integration of clusters.
arXiv Detail & Related papers (2024-10-07T15:55:55Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks.
We propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities.
We develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks.
arXiv Detail & Related papers (2024-09-17T17:59:06Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - VANER: Leveraging Large Language Model for Versatile and Adaptive Biomedical Named Entity Recognition [3.4923338594757674]
Large language models (LLMs) can be used to train a model capable of extracting various types of entities.
In this paper, we utilize the open-sourced LLM LLaMA2 as the backbone model, and design specific instructions to distinguish between different types of entities and datasets.
Our model VANER, trained with a small partition of parameters, significantly outperforms previous LLMs-based models and, for the first time, as a model based on LLM, surpasses the majority of conventional state-of-the-art BioNER systems.
arXiv Detail & Related papers (2024-04-27T09:00:39Z) - A Framework to Implement 1+N Multi-task Fine-tuning Pattern in LLMs
Using the CGC-LORA Algorithm [7.521690071464451]
We propose a unified framework that implements a 1 + N mutli-task fine-tuning pattern in large language models (LLMs)
Our work aims to take an advantage of both MTL (i.e., CGC) and PEFT (i.e., LoRA) scheme.
arXiv Detail & Related papers (2024-01-22T07:58:31Z) - On Inter-dataset Code Duplication and Data Leakage in Large Language Models [4.148857672591562]
This paper explores the phenomenon of inter-dataset code duplication and its impact on evaluating large language models (LLMs)
Our findings reveal a potential threat to the evaluation of LLMs across multiple SE tasks, stemming from the inter-dataset code duplication phenomenon.
We provide evidence that open-source models could be affected by inter-dataset duplication.
arXiv Detail & Related papers (2024-01-15T19:46:40Z) - Large Language Model Routing with Benchmark Datasets [40.42044096089315]
No single model typically achieves the best accuracy in all tasks and use cases.
We propose a new formulation for the problem, in which benchmark datasets are repurposed to learn a "router" model for this selection.
We show that this problem can be reduced to a collection of binary classification tasks.
arXiv Detail & Related papers (2023-09-27T17:08:40Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.