pFedAFM: Adaptive Feature Mixture for Batch-Level Personalization in Heterogeneous Federated Learning
- URL: http://arxiv.org/abs/2404.17847v1
- Date: Sat, 27 Apr 2024 09:52:59 GMT
- Title: pFedAFM: Adaptive Feature Mixture for Batch-Level Personalization in Heterogeneous Federated Learning
- Authors: Liping Yi, Han Yu, Chao Ren, Heng Zhang, Gang Wang, Xiaoguang Liu, Xiaoxiao Li,
- Abstract summary: We propose a model-heterogeneous personalized Federated learning approach with Adaptive Feature Mixture (pFedAFM) for supervised learning tasks.
It significantly outperforms 7 state-of-the-art MHPFL methods, achieving up to 7.93% accuracy improvement.
- Score: 34.01721941230425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model-heterogeneous personalized federated learning (MHPFL) enables FL clients to train structurally different personalized models on non-independent and identically distributed (non-IID) local data. Existing MHPFL methods focus on achieving client-level personalization, but cannot address batch-level data heterogeneity. To bridge this important gap, we propose a model-heterogeneous personalized Federated learning approach with Adaptive Feature Mixture (pFedAFM) for supervised learning tasks. It consists of three novel designs: 1) A sharing global homogeneous small feature extractor is assigned alongside each client's local heterogeneous model (consisting of a heterogeneous feature extractor and a prediction header) to facilitate cross-client knowledge fusion. The two feature extractors share the local heterogeneous model's prediction header containing rich personalized prediction knowledge to retain personalized prediction capabilities. 2) An iterative training strategy is designed to alternately train the global homogeneous small feature extractor and the local heterogeneous large model for effective global-local knowledge exchange. 3) A trainable weight vector is designed to dynamically mix the features extracted by both feature extractors to adapt to batch-level data heterogeneity. Theoretical analysis proves that pFedAFM can converge over time. Extensive experiments on 2 benchmark datasets demonstrate that it significantly outperforms 7 state-of-the-art MHPFL methods, achieving up to 7.93% accuracy improvement while incurring low communication and computation costs.
Related papers
- Personalized Federated Learning with Adaptive Feature Aggregation and Knowledge Transfer [0.0]
Federated Learning (FL) is popular as a privacy-preserving machine learning paradigm for generating a single model on decentralized data.
We propose a new method personalized Federated learning with Adaptive Feature Aggregation and Knowledge Transfer (FedAFK)
We conduct extensive experiments on three datasets in two widely-used heterogeneous settings and show the superior performance of our proposed method over thirteen state-of-the-art baselines.
arXiv Detail & Related papers (2024-10-19T11:32:39Z) - pFedMoE: Data-Level Personalization with Mixture of Experts for
Model-Heterogeneous Personalized Federated Learning [35.72303739409116]
We propose a model-heterogeneous personalized Federated learning with Mixture of Experts (pFedMoE) method.
It assigns a shared homogeneous small feature extractor and a local gating network for each client's local heterogeneous large model.
Overall, pFedMoE enhances local model personalization at a fine-grained data level.
arXiv Detail & Related papers (2024-02-02T12:09:20Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - pFedES: Model Heterogeneous Personalized Federated Learning with Feature
Extractor Sharing [19.403843478569303]
We propose a model-heterogeneous personalized Federated learning approach based on feature extractor sharing.
It incorporates a small homogeneous feature extractor into each client's heterogeneous local model.
It achieves 1.61% higher test accuracy, while reducing communication and computation costs by 99.6% and 82.9%, respectively.
arXiv Detail & Related papers (2023-11-12T15:43:39Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - Efficient Personalized Federated Learning via Sparse Model-Adaptation [47.088124462925684]
Federated Learning (FL) aims to train machine learning models for multiple clients without sharing their own private data.
We propose pFedGate for efficient personalized FL by adaptively and efficiently learning sparse local models.
We show that pFedGate achieves superior global accuracy, individual accuracy and efficiency simultaneously over state-of-the-art methods.
arXiv Detail & Related papers (2023-05-04T12:21:34Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - FedGH: Heterogeneous Federated Learning with Generalized Global Header [16.26231633749833]
Federated learning (FL) is an emerging machine learning paradigm that allows multiple parties to train a shared model.
We propose a simple but effective Federated Global prediction Header (FedGH) approach.
FedGH trains a shared generalized global prediction header with representations by heterogeneous extractors for clients' models.
arXiv Detail & Related papers (2023-03-23T09:38:52Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.