Personalized Federated Learning with Adaptive Feature Aggregation and Knowledge Transfer
- URL: http://arxiv.org/abs/2410.15073v1
- Date: Sat, 19 Oct 2024 11:32:39 GMT
- Title: Personalized Federated Learning with Adaptive Feature Aggregation and Knowledge Transfer
- Authors: Keting Yin, Jiayi Mao,
- Abstract summary: Federated Learning (FL) is popular as a privacy-preserving machine learning paradigm for generating a single model on decentralized data.
We propose a new method personalized Federated learning with Adaptive Feature Aggregation and Knowledge Transfer (FedAFK)
We conduct extensive experiments on three datasets in two widely-used heterogeneous settings and show the superior performance of our proposed method over thirteen state-of-the-art baselines.
- Score: 0.0
- License:
- Abstract: Federated Learning(FL) is popular as a privacy-preserving machine learning paradigm for generating a single model on decentralized data. However, statistical heterogeneity poses a significant challenge for FL. As a subfield of FL, personalized FL (pFL) has attracted attention for its ability to achieve personalized models that perform well on non-independent and identically distributed (Non-IID) data. However, existing pFL methods are limited in terms of leveraging the global model's knowledge to enhance generalization while achieving personalization on local data. To address this, we proposed a new method personalized Federated learning with Adaptive Feature Aggregation and Knowledge Transfer (FedAFK), to train better feature extractors while balancing generalization and personalization for participating clients, which improves the performance of personalized models on Non-IID data. We conduct extensive experiments on three datasets in two widely-used heterogeneous settings and show the superior performance of our proposed method over thirteen state-of-the-art baselines.
Related papers
- Selective Knowledge Sharing for Personalized Federated Learning Under Capacity Heterogeneity [12.333226301343029]
Pa3dFL is a novel framework designed to enhance local model performance by decoupling and selectively sharing knowledge among capacity-heterogeneous models.
We conduct extensive experiments on three datasets to evaluate the effectiveness of Pa3dFL.
arXiv Detail & Related papers (2024-05-31T02:59:25Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - Multi-level Personalized Federated Learning on Heterogeneous and Long-Tailed Data [10.64629029156029]
We introduce an innovative personalized Federated Learning framework, Multi-level Personalized Federated Learning (MuPFL)
MuPFL integrates three pivotal modules: Biased Activation Value Dropout (BAVD), Adaptive Cluster-based Model Update (ACMU) and Prior Knowledge-assisted Fine-tuning (PKCF)
Experiments on diverse real-world datasets show that MuPFL consistently outperforms state-of-the-art baselines, even under extreme non-i.i.d. and long-tail conditions.
arXiv Detail & Related papers (2024-05-10T11:52:53Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - PRIOR: Personalized Prior for Reactivating the Information Overlooked in
Federated Learning [16.344719695572586]
We propose a novel scheme to inject personalized prior knowledge into a global model in each client.
At the heart of our proposed approach is a framework, the PFL with Bregman Divergence (pFedBreD)
Our method reaches the state-of-the-art performances on 5 datasets and outperforms other methods by up to 3.5% across 8 benchmarks.
arXiv Detail & Related papers (2023-10-13T15:21:25Z) - ZooPFL: Exploring Black-box Foundation Models for Personalized Federated
Learning [95.64041188351393]
This paper endeavors to solve both the challenges of limited resources and personalization.
We propose a method named ZOOPFL that uses Zeroth-Order Optimization for Personalized Federated Learning.
To reduce the computation costs and enhance personalization, we propose input surgery to incorporate an auto-encoder with low-dimensional and client-specific embeddings.
arXiv Detail & Related papers (2023-10-08T12:26:13Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - Towards More Suitable Personalization in Federated Learning via
Decentralized Partial Model Training [67.67045085186797]
Almost all existing systems have to face large communication burdens if the central FL server fails.
It personalizes the "right" in the deep models by alternately updating the shared and personal parameters.
To further promote the shared parameters aggregation process, we propose DFed integrating the local Sharpness Miniization.
arXiv Detail & Related papers (2023-05-24T13:52:18Z) - Visual Prompt Based Personalized Federated Learning [83.04104655903846]
We propose a novel PFL framework for image classification tasks, dubbed pFedPT, that leverages personalized visual prompts to implicitly represent local data distribution information of clients.
Experiments on the CIFAR10 and CIFAR100 datasets show that pFedPT outperforms several state-of-the-art (SOTA) PFL algorithms by a large margin in various settings.
arXiv Detail & Related papers (2023-03-15T15:02:15Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Adapt to Adaptation: Learning Personalization for Cross-Silo Federated
Learning [6.0088002781256185]
Conventional federated learning aims to train a global model for a federation of clients with decentralized data.
The distribution shift across non-IID datasets, also known as the data heterogeneity, often poses a challenge for this one-global-model-fits-all solution.
We propose APPLE, a personalized cross-silo FL framework that adaptively learns how much each client can benefit from other clients' models.
arXiv Detail & Related papers (2021-10-15T22:23:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.