Error analysis for finite element operator learning methods for solving parametric second-order elliptic PDEs
- URL: http://arxiv.org/abs/2404.17868v1
- Date: Sat, 27 Apr 2024 11:25:58 GMT
- Title: Error analysis for finite element operator learning methods for solving parametric second-order elliptic PDEs
- Authors: Youngjoon Hong, Seungchan Ko, Jaeyong Lee,
- Abstract summary: We provide a theoretical analysis of a type of operator learning method without data reliance based on the classical finite element approximation.
We address the role of the condition number of the finite element matrix in the convergence of the method.
- Score: 9.658853094888125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we provide a theoretical analysis of a type of operator learning method without data reliance based on the classical finite element approximation, which is called the finite element operator network (FEONet). We first establish the convergence of this method for general second-order linear elliptic PDEs with respect to the parameters for neural network approximation. In this regard, we address the role of the condition number of the finite element matrix in the convergence of the method. Secondly, we derive an explicit error estimate for the self-adjoint case. For this, we investigate some regularity properties of the solution in certain function classes for a neural network approximation, verifying the sufficient condition for the solution to have the desired regularity. Finally, we will also conduct some numerical experiments that support the theoretical findings, confirming the role of the condition number of the finite element matrix in the overall convergence.
Related papers
- Learning Nonlinear Finite Element Solution Operators using Multilayer Perceptrons and Energy Minimization [0.5898893619901381]
We develop and evaluate a method for learning solution operators to nonlinear problems governed by partial differential equations (PDEs)<n>The approach is based on a finite element discretization and aims at representing the solution operator by a multilayer perceptron (MLP)<n>We formulate efficient parallelizable training algorithms based on assembling the energy locally on each element.
arXiv Detail & Related papers (2024-12-05T20:19:16Z) - A Structure-Preserving Kernel Method for Learning Hamiltonian Systems [3.594638299627404]
A structure-preserving kernel ridge regression method is presented that allows the recovery of nonlinear Hamiltonian functions.
The paper extends kernel regression methods to problems in which loss functions involving linear functions of gradients are required.
A full error analysis is conducted that provides convergence rates using fixed and adaptive regularization parameters.
arXiv Detail & Related papers (2024-03-15T07:20:21Z) - On the Identification and Optimization of Nonsmooth Superposition
Operators in Semilinear Elliptic PDEs [3.045851438458641]
We study an infinite-dimensional optimization problem that aims to identify the Nemytskii operator in the nonlinear part of a prototypical semilinear elliptic partial differential equation (PDE)
In contrast to previous works, we consider this identification problem in a low-regularity regime in which the function inducing the Nemytskii operator is a-priori only known to be an element of $H leakyloc(mathbbR)$.
arXiv Detail & Related papers (2023-06-08T13:33:20Z) - Convergence analysis of unsupervised Legendre-Galerkin neural networks
for linear second-order elliptic PDEs [0.8594140167290099]
We perform the convergence analysis of unsupervised Legendre--Galerkin neural networks (ULGNet)
ULGNet is a deep-learning-based numerical method for solving partial differential equations (PDEs)
arXiv Detail & Related papers (2022-11-16T13:31:03Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
We study reinforcement learning for partially observed decision processes (POMDPs) with infinite observation and state spaces.
We make the first attempt at partial observability and function approximation for a class of POMDPs with a linear structure.
arXiv Detail & Related papers (2022-04-20T21:15:38Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
Filtering equations play a central role in many real-life applications, including numerical weather prediction, finance and engineering.
One of the classical approaches to approximate the solution of the filtering equations is to use a PDE inspired method, called the splitting-up method.
We combine this method with a neural network representation to produce an approximation of the unnormalised conditional distribution of the signal process.
arXiv Detail & Related papers (2022-01-10T11:01:36Z) - Optimal prediction for kernel-based semi-functional linear regression [5.827901300943599]
We establish minimax optimal rates of convergence for prediction in a semi-functional linear model.
Our results reveal that the smoother functional component can be learned with the minimax rate as if the nonparametric component were known.
arXiv Detail & Related papers (2021-10-29T04:55:44Z) - A semigroup method for high dimensional elliptic PDEs and eigenvalue
problems based on neural networks [1.52292571922932]
We propose a semigroup computation method for solving high-dimensional elliptic partial differential equations (PDEs) and the associated eigenvalue problems based on neural networks.
For the PDE problems, we reformulate the original equations as variational problems with the help of semigroup operators and then solve the variational problems with neural network (NN) parameterization.
For eigenvalue problems, a primal-dual method is proposed, resolving the constraint with a scalar dual variable.
arXiv Detail & Related papers (2021-05-07T19:49:06Z) - Stochastic Approximation for Online Tensorial Independent Component
Analysis [98.34292831923335]
Independent component analysis (ICA) has been a popular dimension reduction tool in statistical machine learning and signal processing.
In this paper, we present a by-product online tensorial algorithm that estimates for each independent component.
arXiv Detail & Related papers (2020-12-28T18:52:37Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
We consider the bipartite graph and formalize its representation learning problem as a statistical estimation problem of parameters in a semiparametric exponential family distribution.
We show that the proposed objective is strongly convex in a neighborhood around the ground truth, so that a gradient descent-based method achieves linear convergence rate.
Our estimator is robust to any model misspecification within the exponential family, which is validated in extensive experiments.
arXiv Detail & Related papers (2020-03-02T16:40:36Z) - Solving high-dimensional eigenvalue problems using deep neural networks:
A diffusion Monte Carlo like approach [14.558626910178127]
The eigenvalue problem is reformulated as a fixed point problem of the semigroup flow induced by the operator.
The method shares a similar spirit with diffusion Monte Carlo but augments a direct approximation to the eigenfunction through neural-network ansatz.
Our approach is able to provide accurate eigenvalue and eigenfunction approximations in several numerical examples.
arXiv Detail & Related papers (2020-02-07T03:08:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.