論文の概要: A Survey of Deep Learning Library Testing Methods
- arxiv url: http://arxiv.org/abs/2404.17871v1
- Date: Sat, 27 Apr 2024 11:42:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 18:51:42.802694
- Title: A Survey of Deep Learning Library Testing Methods
- Title(参考訳): 深層学習ライブラリ試験法に関する調査研究
- Authors: Xiaoyu Zhang, Weipeng Jiang, Chao Shen, Qi Li, Qian Wang, Chenhao Lin, Xiaohong Guan,
- Abstract要約: ディープラーニング(DL)ライブラリは、基礎となる最適化と計算を行う。
DLライブラリはバグに免疫がなく、ユーザの個人資産や安全性に深刻な脅威をもたらす可能性がある。
本稿では,各種DLライブラリに関する試験研究の概要について述べる。
- 参考スコア(独自算出の注目度): 33.62859142913532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, software systems powered by deep learning (DL) techniques have significantly facilitated people's lives in many aspects. As the backbone of these DL systems, various DL libraries undertake the underlying optimization and computation. However, like traditional software, DL libraries are not immune to bugs, which can pose serious threats to users' personal property and safety. Studying the characteristics of DL libraries, their associated bugs, and the corresponding testing methods is crucial for enhancing the security of DL systems and advancing the widespread application of DL technology. This paper provides an overview of the testing research related to various DL libraries, discusses the strengths and weaknesses of existing methods, and provides guidance and reference for the application of the DL library. This paper first introduces the workflow of DL underlying libraries and the characteristics of three kinds of DL libraries involved, namely DL framework, DL compiler, and DL hardware library. It then provides definitions for DL underlying library bugs and testing. Additionally, this paper summarizes the existing testing methods and tools tailored to these DL libraries separately and analyzes their effectiveness and limitations. It also discusses the existing challenges of DL library testing and outlines potential directions for future research.
- Abstract(参考訳): 近年,ディープラーニング(DL)技術を活用したソフトウェアシステムが,多くの面で人々の生活を著しく促進している。
これらのDLシステムのバックボーンとして、様々なDLライブラリが基礎となる最適化と計算を行っている。
しかし、従来のソフトウェアと同様に、DLライブラリはバグに免疫がなく、ユーザの個人資産や安全性に深刻な脅威をもたらす可能性がある。
DLライブラリの特徴,その関連バグ,およびそれに対応する試験方法の研究は,DLシステムのセキュリティ向上と,DL技術の広範な適用の促進に不可欠である。
本稿では,各種DLライブラリに関する試験研究の概要を述べるとともに,既存手法の長所と短所について考察し,DLライブラリの適用に関するガイダンスと参照を提供する。
本稿では、まず、DL基盤ライブラリのワークフローと、DLフレームワーク、DLコンパイラ、DLハードウェアライブラリの3種類のDLライブラリの特徴を紹介する。
そして、ライブラリのバグとテストの基礎となるDLの定義を提供する。
さらに、これらのDLライブラリに個別に適合する既存のテスト方法やツールを要約し、その有効性と限界を分析する。
また、DLライブラリテストの既存の課題についても論じ、今後の研究の方向性について概説する。
関連論文リスト
- A Tale of Two DL Cities: When Library Tests Meet Compiler [12.751626834965231]
DLライブラリのテスト入力からドメイン知識を抽出するOPERAを提案する。
OPERAはDLライブラリの様々なテストインプットから様々なテストを構築する。
多様性に基づくテストの優先順位付け戦略を取り入れて、これらのテストインプットを移行し実行します。
論文 参考訳(メタデータ) (2024-07-23T16:35:45Z) - Katakomba: Tools and Benchmarks for Data-Driven NetHack [52.0035089982277]
NetHackは強化学習研究のフロンティアとして知られている。
採用には、リソースワイド、実装ワイド、ベンチマークワイドの3つの大きな障害がある、と私たちは主張しています。
オフラインの強化学習コミュニティに慣れ親しんだワークフローの基礎を提供するオープンソースライブラリを開発した。
論文 参考訳(メタデータ) (2023-06-14T22:50:25Z) - SequeL: A Continual Learning Library in PyTorch and JAX [50.33956216274694]
SequeLは継続学習のためのライブラリで、PyTorchとJAXフレームワークの両方をサポートする。
それは、正規化ベースのアプローチ、リプレイベースのアプローチ、ハイブリッドアプローチを含む、幅広い連続学習アルゴリズムのための統一インターフェースを提供する。
私たちはSequeLをオープンソースライブラリとしてリリースし、研究者や開発者が自身の目的で簡単にライブラリを実験し拡張することができます。
論文 参考訳(メタデータ) (2023-04-21T10:00:22Z) - MEMO: Coverage-guided Model Generation For Deep Learning Library Testing [11.263121366956726]
テスト入力としてDLモデルを生成することによって、ディープラーニング(DL)ライブラリをテストするためのいくつかの技術が提案されている。
しかし、これらの手法のテストの有効性は、生成されたDLモデルの多様性によって制約される。
本稿では,レイヤタイプ,層ペア,層パラメータを探索することにより,多様なDLモデルを効率的に生成するMEMOを提案する。
論文 参考訳(メタデータ) (2022-08-02T14:53:02Z) - A Comprehensive Benchmark of Deep Learning Libraries on Mobile Devices [12.342282138576348]
6つの代表的なDL libと15の多様化DLモデルを含むベンチマークを構築した。
次に10台のモバイルデバイスで広範な実験を行い、現在のモバイルDL libsエコシステムの全体像を明らかにするのに役立ちます。
最高のパフォーマンスのDL libは、さまざまなモデルやハードウェアで著しく断片化されています。
論文 参考訳(メタデータ) (2022-02-14T07:00:31Z) - Tensor Processing Primitives: A Programming Abstraction for Efficiency
and Portability in Deep Learning Workloads [86.62083829086393]
このプロセスプリミティブ(TPP、Processing Primitives)は、高い生産性を持つDeep Learning-Workloadの効率的でポータブルな実装を目指すプログラミング抽象化である。
TPPは、高次元テンソル上の複素作用素を構成するためにビルディングブロックとして使用できる2Dテンソル作用素(または仮想ISA)のコンパクトで汎用的な集合を定義する。
我々は,スタンドアロンカーネルとTLPで表現されたエンドツーエンドのDLワークロードによるアプローチの有効性を実証し,複数のプラットフォーム上での最先端実装よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-12T18:35:49Z) - An Empirical Study on Deployment Faults of Deep Learning Based Mobile
Applications [7.58063287182615]
モバイルディープラーニング(DL)アプリは、大規模データを使用してトレーニングされたDLモデルとDLプログラムを統合する。
本稿では,モバイルdlアプリのデプロイ障害に関する最初の総合的研究を行う。
我々は,断層症状に関する23のカテゴリからなる微粒度分類を構築し,異なる断層タイプに対する共通修正戦略を蒸留する。
論文 参考訳(メタデータ) (2021-01-13T08:19:50Z) - A Survey of Deep Active Learning [54.376820959917005]
アクティブラーニング(AL)は、最も少ないサンプルをマークすることで、モデルの性能向上を最大化しようとする。
ディープラーニング(DL)はデータに対して欲張りであり、大量のパラメータを最適化するために大量のデータ供給を必要とする。
ディープラーニング(Deep Active Learning, DAL)が誕生した。
論文 参考訳(メタデータ) (2020-08-30T04:28:31Z) - Automated Reasoning in Temporal DL-Lite [65.9825143048822]
本稿では,時間的DL-Lite(TDL-Lite)知識ベース(KB)に対する自動推論の実現可能性について検討する。
我々は,TDL-Lite KB の満足度を確認するために,市販の推論器を用いてテストする。
TDL-Lite KB の使用を現実的なものにするために,グラフィカルなインタフェースを備えた本格的なツールを提案する。
論文 参考訳(メタデータ) (2020-08-17T16:40:27Z) - The Deep Learning Compiler: A Comprehensive Survey [16.19025439622745]
我々は、広く採用されている設計を詳細に分離し、既存のDLコンパイラを網羅的に調査する。
具体的には、様々な側面から既存のDLコンパイラを総合的に比較する。
論文 参考訳(メタデータ) (2020-02-06T07:29:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。