PromptCL: Improving Event Representation via Prompt Template and Contrastive Learning
- URL: http://arxiv.org/abs/2404.17877v1
- Date: Sat, 27 Apr 2024 12:22:43 GMT
- Title: PromptCL: Improving Event Representation via Prompt Template and Contrastive Learning
- Authors: Yubo Feng, Lishuang Li, Yi Xiang, Xueyang Qin,
- Abstract summary: We present PromptCL, a novel framework for event representation learning.
PromptCL elicits the capabilities of PLMs to comprehensively capture the semantics of short event texts.
Our experimental results demonstrate that PromptCL outperforms state-of-the-art baselines on event related tasks.
- Score: 3.481567499804089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The representation of events in text plays a significant role in various NLP tasks. Recent research demonstrates that contrastive learning has the ability to improve event comprehension capabilities of Pre-trained Language Models (PLMs) and enhance the performance of event representation learning. However, the efficacy of event representation learning based on contrastive learning and PLMs is limited by the short length of event texts. The length of event texts differs significantly from the text length used in the pre-training of PLMs. As a result, there is inconsistency in the distribution of text length between pre-training and event representation learning, which may undermine the learning process of event representation based on PLMs. In this study, we present PromptCL, a novel framework for event representation learning that effectively elicits the capabilities of PLMs to comprehensively capture the semantics of short event texts. PromptCL utilizes a Prompt template borrowed from prompt learning to expand the input text during Contrastive Learning. This helps in enhancing the event representation learning by providing a structured outline of the event components. Moreover, we propose Subject-Predicate-Object (SPO) word order and Event-oriented Masked Language Modeling (EventMLM) to train PLMs to understand the relationships between event components. Our experimental results demonstrate that PromptCL outperforms state-of-the-art baselines on event related tasks. Additionally, we conduct a thorough analysis and demonstrate that using a prompt results in improved generalization capabilities for event representations. Our code will be available at https://github.com/YuboFeng2023/PromptCL.
Related papers
- EventVL: Understand Event Streams via Multimodal Large Language Model [18.57504605615107]
We propose EventVL, the first generative event-based MLLM framework for explicit semantic understanding.
Specifically, to bridge the data gap for connecting different modalities semantics, we first annotate a large event-image/video-text dataset.
To further promote a compact semantic space, Dynamic Semantic Alignment is introduced to improve and complete sparse semantic spaces of events.
arXiv Detail & Related papers (2025-01-23T14:37:21Z) - SE-GCL: An Event-Based Simple and Effective Graph Contrastive Learning for Text Representation [23.60337935010744]
We present an event-based, simple, and effective graph contrastive learning (SE-GCL) for text representation.
Precisely, we extract event blocks from text and construct internal relation graphs to represent inter-semantic interconnections.
In particular, we introduce the concept of an event skeleton for core representation semantics and simplify the typically complex data augmentation techniques.
arXiv Detail & Related papers (2024-12-16T10:53:24Z) - EventGPT: Event Stream Understanding with Multimodal Large Language Models [59.65010502000344]
Event cameras record visual information as asynchronous pixel change streams, excelling at scene perception under unsatisfactory lighting or high-dynamic conditions.
Existing multimodal large language models (MLLMs) concentrate on natural RGB images, failing in scenarios where event data fits better.
We introduce EventGPT, the first MLLM for event stream understanding.
arXiv Detail & Related papers (2024-12-01T14:38:40Z) - Grounding Partially-Defined Events in Multimodal Data [61.0063273919745]
We introduce a multimodal formulation for partially-defined events and cast the extraction of these events as a three-stage span retrieval task.
We propose a benchmark for this task, MultiVENT-G, that consists of 14.5 hours of densely annotated current event videos and 1,168 text documents, containing 22.8K labeled event-centric entities.
Results illustrate the challenges that abstract event understanding poses and demonstrates promise in event-centric video-language systems.
arXiv Detail & Related papers (2024-10-07T17:59:48Z) - Towards Event Extraction from Speech with Contextual Clues [61.164413398231254]
We introduce the Speech Event Extraction (SpeechEE) task and construct three synthetic training sets and one human-spoken test set.
Compared to event extraction from text, SpeechEE poses greater challenges mainly due to complex speech signals that are continuous and have no word boundaries.
Our method brings significant improvements on all datasets, achieving a maximum F1 gain of 10.7%.
arXiv Detail & Related papers (2024-01-27T11:07:19Z) - Vision-Language Pre-Training for Boosting Scene Text Detectors [57.08046351495244]
We specifically adapt vision-language joint learning for scene text detection.
We propose to learn contextualized, joint representations through vision-language pre-training.
The pre-trained model is able to produce more informative representations with richer semantics.
arXiv Detail & Related papers (2022-04-29T03:53:54Z) - CLIP-Event: Connecting Text and Images with Event Structures [123.31452120399827]
We propose a contrastive learning framework to enforce vision-language pretraining models.
We take advantage of text information extraction technologies to obtain event structural knowledge.
Experiments show that our zero-shot CLIP-Event outperforms the state-of-the-art supervised model in argument extraction.
arXiv Detail & Related papers (2022-01-13T17:03:57Z) - Integrating Deep Event-Level and Script-Level Information for Script
Event Prediction [60.67635412135681]
We propose a Transformer-based model, called MCPredictor, which integrates deep event-level and script-level information for script event prediction.
The experimental results on the widely-used New York Times corpus demonstrate the effectiveness and superiority of the proposed model.
arXiv Detail & Related papers (2021-09-24T07:37:32Z) - Text2Event: Controllable Sequence-to-Structure Generation for End-to-end
Event Extraction [35.39643772926177]
Event extraction is challenging due to the complex structure of event records and the semantic gap between text and event.
Traditional methods usually extract event records by decomposing the complex structure prediction task into multiple subtasks.
We propose Text2Event, a sequence-to-structure generation paradigm that can directly extract events from the text in an end-to-end manner.
arXiv Detail & Related papers (2021-06-17T04:00:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.