論文の概要: A Hybrid Approach for Document Layout Analysis in Document images
- arxiv url: http://arxiv.org/abs/2404.17888v2
- Date: Tue, 30 Apr 2024 20:00:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 11:09:15.415606
- Title: A Hybrid Approach for Document Layout Analysis in Document images
- Title(参考訳): 文書画像における文書レイアウト解析のためのハイブリッド手法
- Authors: Tahira Shehzadi, Didier Stricker, Muhammad Zeshan Afzal,
- Abstract要約: 本稿では,トランスフォーマーを用いたオブジェクト検出ネットワークを,革新的なグラフィカルページオブジェクト検出手法として採用する。
コントラスト学習のための高品質なオブジェクトクエリを提供するためのクエリ符号化機構を提案する。
PubLayNet、DocLayNet、PubTablesのベンチマーク実験により、我々のアプローチは最先端の手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 13.155859243167619
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Document layout analysis involves understanding the arrangement of elements within a document. This paper navigates the complexities of understanding various elements within document images, such as text, images, tables, and headings. The approach employs an advanced Transformer-based object detection network as an innovative graphical page object detector for identifying tables, figures, and displayed elements. We introduce a query encoding mechanism to provide high-quality object queries for contrastive learning, enhancing efficiency in the decoder phase. We also present a hybrid matching scheme that integrates the decoder's original one-to-one matching strategy with the one-to-many matching strategy during the training phase. This approach aims to improve the model's accuracy and versatility in detecting various graphical elements on a page. Our experiments on PubLayNet, DocLayNet, and PubTables benchmarks show that our approach outperforms current state-of-the-art methods. It achieves an average precision of 97.3% on PubLayNet, 81.6% on DocLayNet, and 98.6 on PubTables, demonstrating its superior performance in layout analysis. These advancements not only enhance the conversion of document images into editable and accessible formats but also streamline information retrieval and data extraction processes.
- Abstract(参考訳): ドキュメントレイアウト分析は、ドキュメント内の要素の配置を理解することを伴う。
本稿では,テキスト,画像,表,見出しなど,文書画像中の様々な要素を理解する複雑さについて考察する。
このアプローチでは、テーブル、図形、表示要素を識別する革新的なグラフィカルなページオブジェクト検出器として、トランスフォーマーベースのオブジェクト検出ネットワークを採用している。
コントラスト学習のための高品質なオブジェクトクエリを提供するためのクエリ符号化機構を導入し、デコーダフェーズの効率を向上する。
また,デコーダの元々の1対1のマッチング戦略と,トレーニング期間中の1対1のマッチング戦略を統合するハイブリッドマッチング方式を提案する。
このアプローチは、ページ上の様々なグラフィカル要素を検出する際のモデルの精度と汎用性を改善することを目的としている。
PubLayNet、DocLayNet、PubTablesのベンチマーク実験により、我々のアプローチは最先端の手法よりも優れていることが示された。
平均精度はPubLayNetが97.3%、DocLayNetが81.6%、PubTablesが98.6である。
これらの進歩は、文書イメージを編集可能でアクセスしやすいフォーマットに変換するだけでなく、情報検索やデータ抽出プロセスの合理化にも寄与する。
関連論文リスト
- GraphKD: Exploring Knowledge Distillation Towards Document Object
Detection with Structured Graph Creation [14.511401955827875]
ドキュメントにおけるオブジェクト検出は、構造的要素の識別プロセスを自動化するための重要なステップである。
文書画像中の文書オブジェクトを正しく識別し,ローカライズするための,グラフベースの知識蒸留フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-17T23:08:32Z) - A Layer-Wise Tokens-to-Token Transformer Network for Improved Historical
Document Image Enhancement [13.27528507177775]
Tokens-to-token Vision Transformer に基づく新しい文書バイナライゼーション・エンコーダ・デコーダアーキテクチャである textbfT2T-BinFormer を提案する。
様々なDIBCOおよびH-DIBCOベンチマークの実験により、提案モデルは既存のCNNおよびViTベースの最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-12-06T23:01:11Z) - SelfDocSeg: A Self-Supervised vision-based Approach towards Document
Segmentation [15.953725529361874]
文書レイアウト分析は文書研究コミュニティにとって既知の問題である。
個人生活へのインターネット接続が拡大するにつれ、パブリックドメインでは膨大な量のドキュメントが利用できるようになった。
我々は,この課題に自己監督型文書セグメンテーションアプローチと異なり,自己監督型文書セグメンテーションアプローチを用いて対処する。
論文 参考訳(メタデータ) (2023-05-01T12:47:55Z) - Taming Encoder for Zero Fine-tuning Image Customization with
Text-to-Image Diffusion Models [55.04969603431266]
本稿では,ユーザが指定したカスタマイズされたオブジェクトの画像を生成する手法を提案する。
この手法は、従来のアプローチで要求される長大な最適化をバイパスする一般的なフレームワークに基づいている。
提案手法は, 出力品質, 外観の多様性, 被写体忠実度を考慮した画像合成が可能であることを示す。
論文 参考訳(メタデータ) (2023-04-05T17:59:32Z) - Simple Open-Vocabulary Object Detection with Vision Transformers [51.57562920090721]
本稿では,画像テキストモデルをオープン語彙オブジェクト検出に転送するための強力なレシピを提案する。
我々は、最小限の修正、コントラスト的な画像テキスト事前学習、エンドツーエンド検出細調整を備えた標準のVision Transformerアーキテクチャを使用する。
我々は、ゼロショットテキスト条件とワンショット画像条件オブジェクト検出において、非常に強力な性能を達成するために必要な適応戦略と正規化を提供する。
論文 参考訳(メタデータ) (2022-05-12T17:20:36Z) - DocSegTr: An Instance-Level End-to-End Document Image Segmentation
Transformer [16.03084865625318]
ビジネスインテリジェンスプロセスは、しばしばドキュメントから有用なセマンティックコンテンツを抽出する必要がある。
本稿では,文書画像における複雑なレイアウトのエンドツーエンドセグメンテーションのためのトランスフォーマーモデルを提案する。
我々のモデルは、既存の最先端手法に比べて、同等またはより良いセグメンテーション性能を達成した。
論文 参考訳(メタデータ) (2022-01-27T10:50:22Z) - Synthetic Document Generator for Annotation-free Layout Recognition [15.657295650492948]
本稿では,空間的位置,範囲,レイアウト要素のカテゴリを示すラベル付きリアル文書を自動生成する合成文書生成装置について述べる。
合成文書上で純粋に訓練された深層レイアウト検出モデルが,実文書を用いたモデルの性能と一致することを実証的に示す。
論文 参考訳(メタデータ) (2021-11-11T01:58:44Z) - DocScanner: Robust Document Image Rectification with Progressive
Learning [162.03694280524084]
この研究はDocScannerという、文書画像の修正のための新しいディープネットワークアーキテクチャを提示する。
DocScannerは、修正されたイメージの1つの見積を維持し、再帰的なアーキテクチャで徐々に修正される。
反復的な改善によりDocScannerは堅牢で優れたパフォーマンスに収束し、軽量なリカレントアーキテクチャにより実行効率が保証される。
論文 参考訳(メタデータ) (2021-10-28T09:15:02Z) - One-shot Key Information Extraction from Document with Deep Partial
Graph Matching [60.48651298832829]
ドキュメントからキー情報抽出(KIE)は、多くの産業シナリオにおいて効率、生産性、セキュリティを改善する。
KIEタスクのための既存の教師付き学習手法は、多数のラベル付きサンプルを供給し、異なる種類の文書の別々のモデルを学ぶ必要がある。
部分グラフマッチングを用いたワンショットKIEのためのディープエンド・ツー・エンド・トレーニング可能なネットワークを提案する。
論文 参考訳(メタデータ) (2021-09-26T07:45:53Z) - DOC2PPT: Automatic Presentation Slides Generation from Scientific
Documents [76.19748112897177]
文書・スライド生成のための新しい課題とアプローチを提案する。
エンドツーエンドでタスクに取り組むための階層的なシーケンス・ツー・シーケンスアプローチを提案する。
提案手法では,文書やスライド内の固有構造を利用して,パラフレーズとレイアウト予測モジュールを組み込んでスライドを生成する。
論文 参考訳(メタデータ) (2021-01-28T03:21:17Z) - Learning to Compose Hypercolumns for Visual Correspondence [57.93635236871264]
本稿では,画像に条件付けされた関連レイヤを活用することで,動的に効率的な特徴を構成する視覚対応手法を提案する。
提案手法はダイナミックハイパーピクセルフロー(Dynamic Hyperpixel Flow)と呼ばれ,深層畳み込みニューラルネットワークから少数の関連層を選択することにより,高速にハイパーカラム機能を構成することを学習する。
論文 参考訳(メタデータ) (2020-07-21T04:03:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。