論文の概要: Bounding the Expected Robustness of Graph Neural Networks Subject to Node Feature Attacks
- arxiv url: http://arxiv.org/abs/2404.17947v1
- Date: Sat, 27 Apr 2024 15:57:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 18:32:14.052291
- Title: Bounding the Expected Robustness of Graph Neural Networks Subject to Node Feature Attacks
- Title(参考訳): ノード特徴攻撃を受けるグラフニューラルネットワークのロバスト性について
- Authors: Yassine Abbahaddou, Sofiane Ennadir, Johannes F. Lutzeyer, Michalis Vazirgiannis, Henrik Boström,
- Abstract要約: グラフニューラルネットワーク(GNN)は、様々なグラフ表現学習タスクにおいて最先端のパフォーマンスを実証している。
最近の研究では、敵の攻撃に対する脆弱性が明らかにされている。
我々は、GCORN(Graph Convolutional Orthonormal Robust Networks)と呼ばれる、GNNの攻撃非依存的でより堅牢な変種を提案する。
- 参考スコア(独自算出の注目度): 19.041104643953133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have demonstrated state-of-the-art performance in various graph representation learning tasks. Recently, studies revealed their vulnerability to adversarial attacks. In this work, we theoretically define the concept of expected robustness in the context of attributed graphs and relate it to the classical definition of adversarial robustness in the graph representation learning literature. Our definition allows us to derive an upper bound of the expected robustness of Graph Convolutional Networks (GCNs) and Graph Isomorphism Networks subject to node feature attacks. Building on these findings, we connect the expected robustness of GNNs to the orthonormality of their weight matrices and consequently propose an attack-independent, more robust variant of the GCN, called the Graph Convolutional Orthonormal Robust Networks (GCORNs). We further introduce a probabilistic method to estimate the expected robustness, which allows us to evaluate the effectiveness of GCORN on several real-world datasets. Experimental experiments showed that GCORN outperforms available defense methods. Our code is publicly available at: \href{https://github.com/Sennadir/GCORN}{https://github.com/Sennadir/GCORN}.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、様々なグラフ表現学習タスクにおいて最先端のパフォーマンスを実証している。
近年,敵の攻撃に対する脆弱性が報告されている。
本研究では,属性付きグラフの文脈で期待されるロバスト性の概念を理論的に定義し,グラフ表現学習文献における古典的な逆ロバスト性の定義と関連づける。
我々の定義では、ノード特徴攻撃を受けるグラフ畳み込みネットワーク(GCN)とグラフ同型ネットワーク(Graph Isomorphism Networks)の、期待されるロバスト性の上限を導出することができる。
これらの結果に基づいて,GNNの強靭性と重み行列の正則性を結合し,グラフ畳み込みオルソノーマルロバストネットワーク (GCORN) と呼ばれるGCNの攻撃非依存的でより堅牢な変種を提案する。
さらに,予測ロバスト性を推定する確率的手法を導入し,複数の実世界のデータセット上でGCORNの有効性を評価する。
実験により、GCORNは利用可能な防御方法よりも優れていた。
私たちのコードは以下に公開されています。 \href{https://github.com/Sennadir/GCORN}{https://github.com/Sennadir/GCORN}。
関連論文リスト
- DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Reliable Representations Make A Stronger Defender: Unsupervised
Structure Refinement for Robust GNN [36.045702771828736]
グラフニューラルネットワーク(GNN)は、グラフデータ上でのタスクの繁栄に成功している。
近年の研究では、グラフ構造を悪質に修正することで、攻撃者がGNNの性能を壊滅的に低下させることができることが示されている。
グラフ構造を最適化するための教師なしパイプラインSTABLEを提案する。
論文 参考訳(メタデータ) (2022-06-30T10:02:32Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph
Neural Networks [15.448462928073635]
グラフニューラルネットワーク(GNN)は、非ユークリッドデータでの学習を含むさまざまなアプリケーションにますます導入されている。
近年の研究では、GNNはグラフ敵攻撃に弱いことが示されている。
本稿では,GNNモデルの対角的ロバスト性を高めるため,スケーラブルなスペクトル法であるGARNETを提案する。
論文 参考訳(メタデータ) (2022-01-30T06:32:44Z) - Jointly Attacking Graph Neural Network and its Explanations [50.231829335996814]
グラフニューラルネットワーク(GNN)は多くのグラフ関連タスクのパフォーマンスを向上した。
近年の研究では、GNNは敵の攻撃に対して非常に脆弱であることが示されており、敵はグラフを変更することでGNNの予測を誤認することができる。
本稿では、GNNモデルとその説明の両方を同時に利用して攻撃できる新しい攻撃フレームワーク(GEAttack)を提案する。
論文 参考訳(メタデータ) (2021-08-07T07:44:33Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Understanding Graph Neural Networks from Graph Signal Denoising
Perspectives [27.148827305359436]
グラフニューラルネットワーク(GNN)は,ノード分類などのタスクの性能に優れていたため,注目されている。
本稿では,GNN,具体的にはスペクトルグラフ畳み込みネットワークとグラフアテンションネットワークを理解するための理論的枠組みを提供することを目的とする。
論文 参考訳(メタデータ) (2020-06-08T07:10:39Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
グラフニューラルネットワーク(GNN)は、グラフの表現学習において強力なツールである。
近年の研究では、GNNは敵攻撃と呼ばれる、慎重に構築された摂動に弱いことが示されている。
本稿では,構造グラフと頑健なグラフニューラルネットワークモデルを共同で学習できる汎用フレームワークであるPro-GNNを提案する。
論文 参考訳(メタデータ) (2020-05-20T17:07:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。