MediFact at MEDIQA-CORR 2024: Why AI Needs a Human Touch
- URL: http://arxiv.org/abs/2404.17999v1
- Date: Sat, 27 Apr 2024 20:28:38 GMT
- Title: MediFact at MEDIQA-CORR 2024: Why AI Needs a Human Touch
- Authors: Nadia Saeed,
- Abstract summary: We present a novel approach submitted to the MEDIQA-CORR 2024 shared task.
Our method emphasizes extracting contextually relevant information from available clinical text data.
By integrating domain expertise and prioritizing meaningful information extraction, our approach underscores the significance of a human-centric strategy in adapting AI for healthcare.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate representation of medical information is crucial for patient safety, yet artificial intelligence (AI) systems, such as Large Language Models (LLMs), encounter challenges in error-free clinical text interpretation. This paper presents a novel approach submitted to the MEDIQA-CORR 2024 shared task (Ben Abacha et al., 2024a), focusing on the automatic correction of single-word errors in clinical notes. Unlike LLMs that rely on extensive generic data, our method emphasizes extracting contextually relevant information from available clinical text data. Leveraging an ensemble of extractive and abstractive question-answering approaches, we construct a supervised learning framework with domain-specific feature engineering. Our methodology incorporates domain expertise to enhance error correction accuracy. By integrating domain expertise and prioritizing meaningful information extraction, our approach underscores the significance of a human-centric strategy in adapting AI for healthcare.
Related papers
- GAMedX: Generative AI-based Medical Entity Data Extractor Using Large Language Models [1.123722364748134]
This paper introduces GAMedX, a Named Entity Recognition (NER) approach utilizing Large Language Models (LLMs)
The methodology integrates open-source LLMs for NER, utilizing chained prompts and Pydantic schemas for structured output to navigate the complexities of specialized medical jargon.
The findings reveal significant ROUGE F1 score on one of the evaluation datasets with an accuracy of 98%.
arXiv Detail & Related papers (2024-05-31T02:53:22Z) - PromptMind Team at MEDIQA-CORR 2024: Improving Clinical Text Correction with Error Categorization and LLM Ensembles [0.0]
This paper describes our approach to the MEDIQA-CORR shared task, which involves error detection and correction in clinical notes curated by medical professionals.
We aim to assess the capabilities of Large Language Models trained on a vast corpora of internet data that contain both factual and unreliable information.
arXiv Detail & Related papers (2024-05-14T07:16:36Z) - Attribute Structuring Improves LLM-Based Evaluation of Clinical Text
Summaries [62.32403630651586]
Large language models (LLMs) have shown the potential to generate accurate clinical text summaries, but still struggle with issues regarding grounding and evaluation.
Here, we explore a general mitigation framework using Attribute Structuring (AS), which structures the summary evaluation process.
AS consistently improves the correspondence between human annotations and automated metrics in clinical text summarization.
arXiv Detail & Related papers (2024-03-01T21:59:03Z) - Towards Conversational Diagnostic AI [32.84876349808714]
We introduce AMIE (Articulate Medical Intelligence Explorer), a Large Language Model (LLM) based AI system optimized for diagnostic dialogue.
AMIE uses a self-play based simulated environment with automated feedback mechanisms for scaling learning across diverse disease conditions.
AMIE demonstrated greater diagnostic accuracy and superior performance on 28 of 32 axes according to specialist physicians and 24 of 26 axes according to patient actors.
arXiv Detail & Related papers (2024-01-11T04:25:06Z) - README: Bridging Medical Jargon and Lay Understanding for Patient Education through Data-Centric NLP [9.432205523734707]
We introduce a new task of automatically generating lay definitions, aiming to simplify medical terms into patient-friendly lay language.
We first created the dataset, an extensive collection of over 50,000 unique (medical term, lay definition) pairs and 300,000 mentions.
We have also engineered a data-centric Human-AI pipeline that synergizes data filtering, augmentation, and selection to improve data quality.
arXiv Detail & Related papers (2023-12-24T23:01:00Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Detecting automatically the layout of clinical documents to enhance the
performances of downstream natural language processing [53.797797404164946]
We designed an algorithm to process clinical PDF documents and extract only clinically relevant text.
The algorithm consists of several steps: initial text extraction using a PDF, followed by classification into such categories as body text, left notes, and footers.
Medical performance was evaluated by examining the extraction of medical concepts of interest from the text in their respective sections.
arXiv Detail & Related papers (2023-05-23T08:38:33Z) - PMC-LLaMA: Towards Building Open-source Language Models for Medicine [62.39105735933138]
Large Language Models (LLMs) have showcased remarkable capabilities in natural language understanding.
LLMs struggle in domains that require precision, such as medical applications, due to their lack of domain-specific knowledge.
We describe the procedure for building a powerful, open-source language model specifically designed for medicine applications, termed as PMC-LLaMA.
arXiv Detail & Related papers (2023-04-27T18:29:05Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
We present a novel approach to automated medical text based on word simplification and language modelling.
We use a new dataset pairs of publicly available medical sentences and a version of them simplified by clinicians.
Our method based on a language model trained on medical forum data generates simpler sentences while preserving both grammar and the original meaning.
arXiv Detail & Related papers (2021-12-23T16:11:19Z) - Automated Lay Language Summarization of Biomedical Scientific Reviews [16.01452242066412]
Health literacy has emerged as a crucial factor in making appropriate health decisions and ensuring treatment outcomes.
Medical jargon and the complex structure of professional language in this domain make health information especially hard to interpret.
This paper introduces the novel task of automated generation of lay language summaries of biomedical scientific reviews.
arXiv Detail & Related papers (2020-12-23T10:01:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.