論文の概要: FRAME: A Modular Framework for Autonomous Map-merging: Advancements in the Field
- arxiv url: http://arxiv.org/abs/2404.18006v1
- Date: Sat, 27 Apr 2024 20:54:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 18:12:38.685546
- Title: FRAME: A Modular Framework for Autonomous Map-merging: Advancements in the Field
- Title(参考訳): FRAME: 自律的なマップマージのためのモジュールフレームワーク
- Authors: Nikolaos Stathoulopoulos, Björn Lindqvist, Anton Koval, Ali-akbar Agha-mohammadi, George Nikolakopoulos,
- Abstract要約: 本稿では,エゴセントリックなマルチロボット探査における3次元点雲マップの融合について述べる。
提案手法は、最先端の場所認識と学習記述子を利用して、地図間の重複を効率的に検出する。
提案手法の有効性は,ロボット探査の複数のフィールドミッションを通じて実証された。
- 参考スコア(独自算出の注目度): 12.247977717070773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this article, a novel approach for merging 3D point cloud maps in the context of egocentric multi-robot exploration is presented. Unlike traditional methods, the proposed approach leverages state-of-the-art place recognition and learned descriptors to efficiently detect overlap between maps, eliminating the need for the time-consuming global feature extraction and feature matching process. The estimated overlapping regions are used to calculate a homogeneous rigid transform, which serves as an initial condition for the GICP point cloud registration algorithm to refine the alignment between the maps. The advantages of this approach include faster processing time, improved accuracy, and increased robustness in challenging environments. Furthermore, the effectiveness of the proposed framework is successfully demonstrated through multiple field missions of robot exploration in a variety of different underground environments.
- Abstract(参考訳): 本稿では,エゴセントリックなマルチロボット探査における3次元点雲マップの融合について述べる。
従来の手法とは異なり、提案手法は最先端の場所認識と学習記述子を利用して地図間の重複を効率的に検出し、時間を要するグローバルな特徴抽出と特徴マッチングプロセスの必要性を排除している。
推定重なり合う領域は、GICP点雲登録アルゴリズムの初期条件として機能し、地図間のアライメントを洗練させる等質な剛性変換を計算するために用いられる。
このアプローチの利点は、高速な処理時間、精度の向上、挑戦的な環境における堅牢性の向上である。
さらに,提案手法の有効性を,様々な地下環境におけるロボット探査の複数のフィールドミッションを通じて実証した。
関連論文リスト
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - OverlapMamba: Novel Shift State Space Model for LiDAR-based Place Recognition [10.39935021754015]
位置認識のための新しいネットワークであるOverlapMambaを開発した。
本手法は,以前に訪れた場所を異なる方向から横断する場合でも,ループの閉鎖を効果的に検出する。
生のレンジビューの入力に基づいて、典型的なLiDARと複数ビューの組み合わせ法を時間的複雑さと速度で上回っている。
論文 参考訳(メタデータ) (2024-05-13T17:46:35Z) - Multiway Point Cloud Mosaicking with Diffusion and Global Optimization [74.3802812773891]
マルチウェイポイントクラウドモザイクのための新しいフレームワーク(水曜日)を紹介する。
我々のアプローチの核心は、重複を識別し、注意点を洗練する学習されたペアワイズ登録アルゴリズムODINである。
4つの多種多様な大規模データセットを用いて、我々の手法は、全てのベンチマークにおいて大きなマージンで、最先端のペアとローテーションの登録結果を比較した。
論文 参考訳(メタデータ) (2024-03-30T17:29:13Z) - Volumetric Semantically Consistent 3D Panoptic Mapping [77.13446499924977]
非構造環境における自律エージェントに適したセマンティック3Dマップを生成することを目的としたオンライン2次元から3次元のセマンティック・インスタンスマッピングアルゴリズムを提案する。
マッピング中にセマンティック予測の信頼性を統合し、セマンティックおよびインスタンス一貫性のある3D領域を生成する新しい方法を導入する。
提案手法は,パブリックな大規模データセット上での最先端の精度を実現し,多くの広く使用されているメトリクスを改善した。
論文 参考訳(メタデータ) (2023-09-26T08:03:10Z) - Incremental Multimodal Surface Mapping via Self-Organizing Gaussian
Mixture Models [1.0878040851638]
本文では,環境を連続確率モデルとして表わすインクリメンタルなマルチモーダル表面マッピング手法について述べる。
この研究で使用される戦略は環境を表現するためにガウス混合モデル(GMM)を用いる。
このギャップを埋めるために,高速GMMサブマップ抽出のための空間ハッシュマップを導入する。
論文 参考訳(メタデータ) (2023-09-19T19:49:03Z) - Temporal Action Localization with Enhanced Instant Discriminability [66.76095239972094]
時間的行動検出(TAD)は、すべての行動境界とその対応するカテゴリを、トリミングされていないビデオで検出することを目的としている。
本稿では,既存の手法による動作境界の不正確な予測を解決するために,TriDetという一段階のフレームワークを提案する。
実験結果から,複数のTADデータセット上でのTriDetの堅牢性と最先端性能が示された。
論文 参考訳(メタデータ) (2023-09-11T16:17:50Z) - DETR Doesn't Need Multi-Scale or Locality Design [69.56292005230185]
本稿では,"プレーン"特性を維持できる改良型DETR検出器を提案する。
特定の局所性制約を伴わずに、単一スケールの機能マップとグローバルなクロスアテンション計算を使用する。
マルチスケールな特徴マップと局所性制約の欠如を補うために,2つの単純な技術が平易な設計において驚くほど効果的であることを示す。
論文 参考訳(メタデータ) (2023-08-03T17:59:04Z) - Implicit neural representation for change detection [15.741202788959075]
点雲の変化を検出する最も一般的なアプローチは、教師付き手法に基づいている。
Inlicit Neural Representation (INR) for continuous shape reconstruction と Gaussian Mixture Model for categorising change の2つのコンポーネントからなる教師なしアプローチを提案する。
本手法を都市スプロールのためのシミュレーションLiDAR点雲からなるベンチマークデータセットに適用する。
論文 参考訳(メタデータ) (2023-07-28T09:26:00Z) - FRAME: Fast and Robust Autonomous 3D point cloud Map-merging for
Egocentric multi-robot exploration [2.433860819518925]
本稿では,エゴセントリックなヘテロジニアスマルチロボット探索のための3次元クラウドマップ統合フレームワークを提案する。
提案した新しいソリューションは、最先端の場所認識学習ディスクリプタを利用して、フレームワークのメインパイプラインを通じて、高速で堅牢なリージョン重複推定を提供する。
提案手法の有効性を, 地下環境における複数フィールドマルチロボット探査計画に基づいて実験的に評価した。
論文 参考訳(メタデータ) (2023-01-22T21:59:38Z) - Gaussian Process Gradient Maps for Loop-Closure Detection in
Unstructured Planetary Environments [17.276441789710574]
以前にマップされた位置を認識する能力は、自律システムにとって不可欠な機能である。
非構造的な惑星のような環境は、地形の類似性のためにこれらのシステムに大きな課題をもたらす。
本稿では,空間情報のみを用いたループ閉鎖問題の解法を提案する。
論文 参考訳(メタデータ) (2020-09-01T04:41:40Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
局所的な特徴は、ポイント・ツー・ポイント対応ではなく、リージョン・ツー・リージョンを提供する。
本稿では,全モデル推定パイプラインにおいて,地域間マッチングを効果的に活用するためのガイドラインを提案する。
実験により、アフィンソルバはより高速な実行時にポイントベースソルバに匹敵する精度を達成できることが示された。
論文 参考訳(メタデータ) (2020-07-20T12:07:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。