Fashion Recommendation: Outfit Compatibility using GNN
- URL: http://arxiv.org/abs/2404.18040v1
- Date: Sun, 28 Apr 2024 00:57:17 GMT
- Title: Fashion Recommendation: Outfit Compatibility using GNN
- Authors: Samaksh Gulati,
- Abstract summary: We follow two existing approaches that employ graphs to represent outfits.
Both Node-wise Graph Neural Network (NGNN) and Hypergraph Neural Network aim to score a set of items according to the outfit compatibility of items.
We recreate the analysis on a subset of this data and compare the two existing models on their performance on two tasks Fill in the blank (FITB): finding an item that completes an outfit, and Compatibility prediction: estimating compatibility of different items grouped as an outfit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerous industries have benefited from the use of machine learning and fashion in industry is no exception. By gaining a better understanding of what makes a good outfit, companies can provide useful product recommendations to their users. In this project, we follow two existing approaches that employ graphs to represent outfits and use modified versions of the Graph neural network (GNN) frameworks. Both Node-wise Graph Neural Network (NGNN) and Hypergraph Neural Network aim to score a set of items according to the outfit compatibility of items. The data used is the Polyvore Dataset which consists of curated outfits with product images and text descriptions for each product in an outfit. We recreate the analysis on a subset of this data and compare the two existing models on their performance on two tasks Fill in the blank (FITB): finding an item that completes an outfit, and Compatibility prediction: estimating compatibility of different items grouped as an outfit. We can replicate the results directionally and find that HGNN does have a slightly better performance on both tasks. On top of replicating the results of the two papers we also tried to use embeddings generated from a vision transformer and witness enhanced prediction accuracy across the board
Related papers
- Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
We present a code that successfully replicates results from six popular and recent graph recommendation models.
We compare these graph models with traditional collaborative filtering models that historically performed well in offline evaluations.
By investigating the information flow from users' neighborhoods, we aim to identify which models are influenced by intrinsic features in the dataset structure.
arXiv Detail & Related papers (2023-08-01T09:31:44Z) - Transformer-based Graph Neural Networks for Outfit Generation [22.86041284499166]
TGNN exploits multi-headed self attention to capture relations between clothing items in a graph as a message passing step in Convolutional Graph Neural Networks.
We propose a transformer-based architecture, which exploits multi-headed self attention to capture relations between clothing items in a graph as a message passing step in Convolutional Graph Neural Networks.
arXiv Detail & Related papers (2023-04-17T09:18:45Z) - Revisiting Embeddings for Graph Neural Networks [0.0]
We explore different embedding extraction techniques for both images and texts.
We find that the choice of embedding biases the performance of different GNN architectures.
We propose Graph-connected Network (GraNet) layers which use GNN message passing within large models to allow neighborhood aggregation.
arXiv Detail & Related papers (2022-09-19T20:37:55Z) - VICTOR: Visual Incompatibility Detection with Transformers and
Fashion-specific contrastive pre-training [18.753508811614644]
Visual InCompatibility TransfORmer (VICTOR) is optimized for two tasks: 1) overall compatibility as regression and 2) the detection of mismatching items.
We build upon the Polyvore outfit benchmark to generate partially mismatching outfits, creating a new dataset termed Polyvore-MISFITs.
A series of ablation and comparative analyses show that the proposed architecture can compete and even surpass the current state-of-the-art on Polyvore datasets.
arXiv Detail & Related papers (2022-07-27T11:18:55Z) - Relation Regularized Scene Graph Generation [206.76762860019065]
Scene graph generation (SGG) is built on top of detected objects to predict object pairwise visual relations.
We propose a relation regularized network (R2-Net) which can predict whether there is a relationship between two objects.
Our R2-Net can effectively refine object labels and generate scene graphs.
arXiv Detail & Related papers (2022-02-22T11:36:49Z) - Meta-Aggregator: Learning to Aggregate for 1-bit Graph Neural Networks [127.32203532517953]
We develop a vanilla 1-bit framework that binarizes both the GNN parameters and the graph features.
Despite the lightweight architecture, we observed that this vanilla framework suffered from insufficient discriminative power in distinguishing graph topologies.
This discovery motivates us to devise meta aggregators to improve the expressive power of vanilla binarized GNNs.
arXiv Detail & Related papers (2021-09-27T08:50:37Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Fashion Recommendation and Compatibility Prediction Using Relational
Network [18.13692056232815]
We develop a Relation Network (RN) to develop new compatibility learning models.
FashionRN learns the compatibility of an entire outfit, with an arbitrary number of items, in an arbitrary order.
We evaluate our model using a large dataset of 49,740 outfits that we collected from Polyvore website.
arXiv Detail & Related papers (2020-05-13T21:00:54Z) - Learning Diverse Fashion Collocation by Neural Graph Filtering [78.9188246136867]
We propose a novel fashion collocation framework, Neural Graph Filtering, that models a flexible set of fashion items via a graph neural network.
By applying symmetric operations on the edge vectors, this framework allows varying numbers of inputs/outputs and is invariant to their ordering.
We evaluate the proposed approach on three popular benchmarks, the Polyvore dataset, the Polyvore-D dataset, and our reorganized Amazon Fashion dataset.
arXiv Detail & Related papers (2020-03-11T16:17:08Z) - Zero-Shot Video Object Segmentation via Attentive Graph Neural Networks [150.5425122989146]
This work proposes a novel attentive graph neural network (AGNN) for zero-shot video object segmentation (ZVOS)
AGNN builds a fully connected graph to efficiently represent frames as nodes, and relations between arbitrary frame pairs as edges.
Experimental results on three video segmentation datasets show that AGNN sets a new state-of-the-art in each case.
arXiv Detail & Related papers (2020-01-19T10:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.