Compressed Image Captioning using CNN-based Encoder-Decoder Framework
- URL: http://arxiv.org/abs/2404.18062v1
- Date: Sun, 28 Apr 2024 03:47:48 GMT
- Title: Compressed Image Captioning using CNN-based Encoder-Decoder Framework
- Authors: Md Alif Rahman Ridoy, M Mahmud Hasan, Shovon Bhowmick,
- Abstract summary: We develop an automatic image captioning architecture that combines the strengths of convolutional neural networks (CNNs) and encoder-decoder models.
We also do a performance comparison where we delved into the realm of pre-trained CNN models.
In our quest for optimization, we also explored the integration of frequency regularization techniques to compress the "AlexNet" and "EfficientNetB0" models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In today's world, image processing plays a crucial role across various fields, from scientific research to industrial applications. But one particularly exciting application is image captioning. The potential impact of effective image captioning is vast. It can significantly boost the accuracy of search engines, making it easier to find relevant information. Moreover, it can greatly enhance accessibility for visually impaired individuals, providing them with a more immersive experience of digital content. However, despite its promise, image captioning presents several challenges. One major hurdle is extracting meaningful visual information from images and transforming it into coherent language. This requires bridging the gap between the visual and linguistic domains, a task that demands sophisticated algorithms and models. Our project is focused on addressing these challenges by developing an automatic image captioning architecture that combines the strengths of convolutional neural networks (CNNs) and encoder-decoder models. The CNN model is used to extract the visual features from images, and later, with the help of the encoder-decoder framework, captions are generated. We also did a performance comparison where we delved into the realm of pre-trained CNN models, experimenting with multiple architectures to understand their performance variations. In our quest for optimization, we also explored the integration of frequency regularization techniques to compress the "AlexNet" and "EfficientNetB0" model. We aimed to see if this compressed model could maintain its effectiveness in generating image captions while being more resource-efficient.
Related papers
- AdaptVision: Dynamic Input Scaling in MLLMs for Versatile Scene Understanding [96.01726275876548]
We present AdaptVision, a multimodal large language model specifically designed to dynamically process input images at varying resolutions.
We devise a dynamic image partitioning module that adjusts the number of visual tokens according to the size and aspect ratio of images.
Our model is capable of processing images with resolutions up to $1008times 1008$.
arXiv Detail & Related papers (2024-08-30T03:16:49Z) - Towards Retrieval-Augmented Architectures for Image Captioning [81.11529834508424]
This work presents a novel approach towards developing image captioning models that utilize an external kNN memory to improve the generation process.
Specifically, we propose two model variants that incorporate a knowledge retriever component that is based on visual similarities.
We experimentally validate our approach on COCO and nocaps datasets and demonstrate that incorporating an explicit external memory can significantly enhance the quality of captions.
arXiv Detail & Related papers (2024-05-21T18:02:07Z) - A Comparative Study of Pre-trained CNNs and GRU-Based Attention for
Image Caption Generation [9.490898534790977]
This paper proposes a deep neural framework for image caption generation using a GRU-based attention mechanism.
Our approach employs multiple pre-trained convolutional neural networks as the encoder to extract features from the image and a GRU-based language model as the decoder to generate sentences.
arXiv Detail & Related papers (2023-10-11T07:30:01Z) - An Image captioning algorithm based on the Hybrid Deep Learning
Technique (CNN+GRU) [0.0]
We present a CNN-GRU encoder decode framework for caption-to-image reconstructor.
It handles the semantic context into consideration as well as the time complexity.
The suggested model outperforms the state-of-the-art LSTM-A5 model for picture captioning in terms of time complexity and accuracy.
arXiv Detail & Related papers (2023-01-06T10:00:06Z) - Retrieval-Augmented Transformer for Image Captioning [51.79146669195357]
We develop an image captioning approach with a kNN memory, with which knowledge can be retrieved from an external corpus to aid the generation process.
Our architecture combines a knowledge retriever based on visual similarities, a differentiable encoder, and a kNN-augmented attention layer to predict tokens.
Experimental results, conducted on the COCO dataset, demonstrate that employing an explicit external memory can aid the generation process and increase caption quality.
arXiv Detail & Related papers (2022-07-26T19:35:49Z) - Image Captioning based on Feature Refinement and Reflective Decoding [0.0]
This paper introduces an encoder-decoder-based image captioning system.
It extracts spatial and global features for each region in the image using the Faster R-CNN with ResNet-101 as a backbone.
The decoder consists of an attention-based recurrent module and a reflective attention module to enhance the decoder's ability to model long-term sequential dependencies.
arXiv Detail & Related papers (2022-06-16T07:56:28Z) - MaskOCR: Text Recognition with Masked Encoder-Decoder Pretraining [68.05105411320842]
We propose a novel approach MaskOCR to unify vision and language pre-training in the classical encoder-decoder recognition framework.
We adopt the masked image modeling approach to pre-train the feature encoder using a large set of unlabeled real text images.
We transform text data into synthesized text images to unify the data modalities of vision and language, and enhance the language modeling capability of the sequence decoder.
arXiv Detail & Related papers (2022-06-01T08:27:19Z) - Injecting Semantic Concepts into End-to-End Image Captioning [61.41154537334627]
We propose a pure vision transformer-based image captioning model, dubbed as ViTCAP, in which grid representations are used without extracting the regional features.
For improved performance, we introduce a novel Concept Token Network (CTN) to predict the semantic concepts and then incorporate them into the end-to-end captioning.
In particular, the CTN is built on the basis of a vision transformer and is designed to predict the concept tokens through a classification task.
arXiv Detail & Related papers (2021-12-09T22:05:05Z) - Dynamic Neural Representational Decoders for High-Resolution Semantic
Segmentation [98.05643473345474]
We propose a novel decoder, termed dynamic neural representational decoder (NRD)
As each location on the encoder's output corresponds to a local patch of the semantic labels, in this work, we represent these local patches of labels with compact neural networks.
This neural representation enables our decoder to leverage the smoothness prior in the semantic label space, and thus makes our decoder more efficient.
arXiv Detail & Related papers (2021-07-30T04:50:56Z) - Empirical Analysis of Image Caption Generation using Deep Learning [0.0]
We have implemented and experimented with various flavors of multi-modal image captioning networks.
The goal is to analyze the performance of each approach using various evaluation metrics.
arXiv Detail & Related papers (2021-05-14T05:38:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.