Generative AI for Visualization: State of the Art and Future Directions
- URL: http://arxiv.org/abs/2404.18144v1
- Date: Sun, 28 Apr 2024 11:27:30 GMT
- Title: Generative AI for Visualization: State of the Art and Future Directions
- Authors: Yilin Ye, Jianing Hao, Yihan Hou, Zhan Wang, Shishi Xiao, Yuyu Luo, Wei Zeng,
- Abstract summary: This paper looks back on previous visualization studies leveraging GenAI.
By summarizing different generation algorithms, their current applications and limitations, this paper endeavors to provide useful insights for future GenAI4VIS research.
- Score: 7.273704442256712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI (GenAI) has witnessed remarkable progress in recent years and demonstrated impressive performance in various generation tasks in different domains such as computer vision and computational design. Many researchers have attempted to integrate GenAI into visualization framework, leveraging the superior generative capacity for different operations. Concurrently, recent major breakthroughs in GenAI like diffusion model and large language model have also drastically increase the potential of GenAI4VIS. From a technical perspective, this paper looks back on previous visualization studies leveraging GenAI and discusses the challenges and opportunities for future research. Specifically, we cover the applications of different types of GenAI methods including sequence, tabular, spatial and graph generation techniques for different tasks of visualization which we summarize into four major stages: data enhancement, visual mapping generation, stylization and interaction. For each specific visualization sub-task, we illustrate the typical data and concrete GenAI algorithms, aiming to provide in-depth understanding of the state-of-the-art GenAI4VIS techniques and their limitations. Furthermore, based on the survey, we discuss three major aspects of challenges and research opportunities including evaluation, dataset, and the gap between end-to-end GenAI and generative algorithms. By summarizing different generation algorithms, their current applications and limitations, this paper endeavors to provide useful insights for future GenAI4VIS research.
Related papers
- On the Limitations and Prospects of Machine Unlearning for Generative AI [7.795648142175443]
Generative AI (GenAI) aims to synthesize realistic and diverse data samples from latent variables or other data modalities.
GenAI has achieved remarkable results in various domains, such as natural language, images, audio, and graphs.
However, they also pose challenges and risks to data privacy, security, and ethics.
arXiv Detail & Related papers (2024-08-01T08:35:40Z) - Model-based Maintenance and Evolution with GenAI: A Look into the Future [47.93555901495955]
We argue that Generative Artificial Intelligence (GenAI) can be used as a means to address the limitations of Model-Based Engineering (MBM&E)
We propose that GenAI can be used in MBM&E for: reducing engineers' learning curve, maximizing efficiency with recommendations, or serving as a reasoning tool to understand domain problems.
arXiv Detail & Related papers (2024-07-09T23:13:26Z) - Explainable Generative AI (GenXAI): A Survey, Conceptualization, and Research Agenda [1.8592384822257952]
We elaborate on why XAI has gained importance with the rise of GenAI and its challenges for explainability research.
We also unveil novel and emerging desiderata that explanations should fulfill, covering aspects such as verifiability, interactivity, security, and cost.
arXiv Detail & Related papers (2024-04-15T08:18:16Z) - Deepfake Generation and Detection: A Benchmark and Survey [134.19054491600832]
Deepfake is a technology dedicated to creating highly realistic facial images and videos under specific conditions.
This survey comprehensively reviews the latest developments in deepfake generation and detection.
We focus on researching four representative deepfake fields: face swapping, face reenactment, talking face generation, and facial attribute editing.
arXiv Detail & Related papers (2024-03-26T17:12:34Z) - From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models [98.41645229835493]
Data visualization in the form of charts plays a pivotal role in data analysis, offering critical insights and aiding in informed decision-making.
Large foundation models, such as large language models, have revolutionized various natural language processing tasks.
This survey paper serves as a comprehensive resource for researchers and practitioners in the fields of natural language processing, computer vision, and data analysis.
arXiv Detail & Related papers (2024-03-18T17:57:09Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
This survey presents a comprehensive analysis of data augmentation techniques in human-centric vision tasks.
It delves into a wide range of research areas including person ReID, human parsing, human pose estimation, and pedestrian detection.
Our work categorizes data augmentation methods into two main types: data generation and data perturbation.
arXiv Detail & Related papers (2024-03-13T16:05:18Z) - Generative AI and Process Systems Engineering: The Next Frontier [0.5937280131734116]
This article explores how emerging generative artificial intelligence (GenAI) models, such as large language models (LLMs), can enhance solution methodologies within process systems engineering (PSE)
These cutting-edge GenAI models, particularly foundation models (FMs), are pre-trained on extensive, general-purpose datasets.
The article identifies and discusses potential challenges in fully leveraging GenAI within PSE, including multiscale modeling, data requirements, evaluation metrics and benchmarks, and trust and safety.
arXiv Detail & Related papers (2024-02-15T18:20:42Z) - GenLens: A Systematic Evaluation of Visual GenAI Model Outputs [33.93591473459988]
GenLens is a visual analytic interface designed for the systematic evaluation of GenAI model outputs.
A user study with model developers reveals that GenLens effectively enhances their workflow, evidenced by high satisfaction rates.
arXiv Detail & Related papers (2024-02-06T04:41:06Z) - Generative Artificial Intelligence in Learning Analytics:
Contextualising Opportunities and Challenges through the Learning Analytics
Cycle [0.0]
Generative artificial intelligence (GenAI) holds significant potential for transforming education and enhancing human productivity.
This paper delves into the prospective opportunities and challenges GenAI poses for advancing learning analytics (LA)
We posit that GenAI can play pivotal roles in analysing unstructured data, generating synthetic learner data, enriching multimodal learner interactions, advancing interactive and explanatory analytics, and facilitating personalisation and adaptive interventions.
arXiv Detail & Related papers (2023-11-30T07:25:34Z) - State of the Art on Diffusion Models for Visual Computing [191.6168813012954]
This report introduces the basic mathematical concepts of diffusion models, implementation details and design choices of the popular Stable Diffusion model.
We also give a comprehensive overview of the rapidly growing literature on diffusion-based generation and editing.
We discuss available datasets, metrics, open challenges, and social implications.
arXiv Detail & Related papers (2023-10-11T05:32:29Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC)
The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace.
arXiv Detail & Related papers (2023-03-07T20:36:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.