On the Limitations and Prospects of Machine Unlearning for Generative AI
- URL: http://arxiv.org/abs/2408.00376v1
- Date: Thu, 1 Aug 2024 08:35:40 GMT
- Title: On the Limitations and Prospects of Machine Unlearning for Generative AI
- Authors: Shiji Zhou, Lianzhe Wang, Jiangnan Ye, Yongliang Wu, Heng Chang,
- Abstract summary: Generative AI (GenAI) aims to synthesize realistic and diverse data samples from latent variables or other data modalities.
GenAI has achieved remarkable results in various domains, such as natural language, images, audio, and graphs.
However, they also pose challenges and risks to data privacy, security, and ethics.
- Score: 7.795648142175443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative AI (GenAI), which aims to synthesize realistic and diverse data samples from latent variables or other data modalities, has achieved remarkable results in various domains, such as natural language, images, audio, and graphs. However, they also pose challenges and risks to data privacy, security, and ethics. Machine unlearning is the process of removing or weakening the influence of specific data samples or features from a trained model, without affecting its performance on other data or tasks. While machine unlearning has shown significant efficacy in traditional machine learning tasks, it is still unclear if it could help GenAI become safer and aligned with human desire. To this end, this position paper provides an in-depth discussion of the machine unlearning approaches for GenAI. Firstly, we formulate the problem of machine unlearning tasks on GenAI and introduce the background. Subsequently, we systematically examine the limitations of machine unlearning on GenAI models by focusing on the two representative branches: LLMs and image generative (diffusion) models. Finally, we provide our prospects mainly from three aspects: benchmark, evaluation metrics, and utility-unlearning trade-off, and conscientiously advocate for the future development of this field.
Related papers
- Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
This paper aims to investigate the intersection of GenAI and SAR.
First, we illustrate the common data generation-based applications in SAR field.
Then, an overview of the latest GenAI models is systematically reviewed.
Finally, the corresponding applications in SAR domain are also included.
arXiv Detail & Related papers (2024-11-05T03:06:00Z) - LLMs Integration in Software Engineering Team Projects: Roles, Impact, and a Pedagogical Design Space for AI Tools in Computing Education [7.058964784190549]
This work takes a pedagogical lens to explore the implications of generative AI (GenAI) models and tools, such as ChatGPT and GitHub Copilot.
Our results address a particular gap in understanding the role and implications of GenAI on teamwork, team-efficacy, and team dynamics.
arXiv Detail & Related papers (2024-10-30T14:43:33Z) - Model-based Maintenance and Evolution with GenAI: A Look into the Future [47.93555901495955]
We argue that Generative Artificial Intelligence (GenAI) can be used as a means to address the limitations of Model-Based Engineering (MBM&E)
We propose that GenAI can be used in MBM&E for: reducing engineers' learning curve, maximizing efficiency with recommendations, or serving as a reasoning tool to understand domain problems.
arXiv Detail & Related papers (2024-07-09T23:13:26Z) - Generative AI for Visualization: State of the Art and Future Directions [7.273704442256712]
This paper looks back on previous visualization studies leveraging GenAI.
By summarizing different generation algorithms, their current applications and limitations, this paper endeavors to provide useful insights for future GenAI4VIS research.
arXiv Detail & Related papers (2024-04-28T11:27:30Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Generative AI and Process Systems Engineering: The Next Frontier [0.5937280131734116]
This article explores how emerging generative artificial intelligence (GenAI) models, such as large language models (LLMs), can enhance solution methodologies within process systems engineering (PSE)
These cutting-edge GenAI models, particularly foundation models (FMs), are pre-trained on extensive, general-purpose datasets.
The article identifies and discusses potential challenges in fully leveraging GenAI within PSE, including multiscale modeling, data requirements, evaluation metrics and benchmarks, and trust and safety.
arXiv Detail & Related papers (2024-02-15T18:20:42Z) - GenLens: A Systematic Evaluation of Visual GenAI Model Outputs [33.93591473459988]
GenLens is a visual analytic interface designed for the systematic evaluation of GenAI model outputs.
A user study with model developers reveals that GenLens effectively enhances their workflow, evidenced by high satisfaction rates.
arXiv Detail & Related papers (2024-02-06T04:41:06Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
arXiv Detail & Related papers (2022-11-27T13:07:14Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
Research in machine learning is at a turning point.
Research interests are shifting away from increasing the performance of highly parameterized models to exceedingly specific tasks.
This white paper provides an introduction and discussion of this emerging field in machine learning research.
arXiv Detail & Related papers (2020-12-21T15:07:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.