ShapeMoiré: Channel-Wise Shape-Guided Network for Image Demoiréing
- URL: http://arxiv.org/abs/2404.18155v1
- Date: Sun, 28 Apr 2024 12:12:08 GMT
- Title: ShapeMoiré: Channel-Wise Shape-Guided Network for Image Demoiréing
- Authors: Jinming Cao, Sicheng Shen, Qiu Zhou, Yifang Yin, Yangyan Li, Roger Zimmermann,
- Abstract summary: Photographing optoelectronic displays often introduces unwanted moir'e patterns due to analog signal interference.
This work identifies two problems that are largely ignored by existing image demoir'eing approaches.
We propose a ShapeMoir'e method to aid in image demoir'eing.
- Score: 19.56605254816149
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Photographing optoelectronic displays often introduces unwanted moir\'e patterns due to analog signal interference between the pixel grids of the display and the camera sensor arrays. This work identifies two problems that are largely ignored by existing image demoir\'eing approaches: 1) moir\'e patterns vary across different channels (RGB); 2) repetitive patterns are constantly observed. However, employing conventional convolutional (CNN) layers cannot address these problems. Instead, this paper presents the use of our recently proposed Shape concept. It was originally employed to model consistent features from fragmented regions, particularly when identical or similar objects coexist in an RGB-D image. Interestingly, we find that the Shape information effectively captures the moir\'e patterns in artifact images. Motivated by this discovery, we propose a ShapeMoir\'e method to aid in image demoir\'eing. Beyond modeling shape features at the patch-level, we further extend this to the global image-level and design a novel Shape-Architecture. Consequently, our proposed method, equipped with both ShapeConv and Shape-Architecture, can be seamlessly integrated into existing approaches without introducing additional parameters or computation overhead during inference. We conduct extensive experiments on four widely used datasets, and the results demonstrate that our ShapeMoir\'e achieves state-of-the-art performance, particularly in terms of the PSNR metric. We then apply our method across four popular architectures to showcase its generalization capabilities. Moreover, our ShapeMoir\'e is robust and viable under real-world demoir\'eing scenarios involving smartphone photographs.
Related papers
- Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening [2.874893537471256]
Unfolding fusion methods integrate the powerful representation capabilities of deep learning with the robustness of model-based approaches.
In this paper, we propose a model-based deep unfolded method for satellite image fusion.
Experimental results on PRISMA, Quickbird, and WorldView2 datasets demonstrate the superior performance of our method.
arXiv Detail & Related papers (2024-09-04T13:05:00Z) - Unifying Visual and Semantic Feature Spaces with Diffusion Models for Enhanced Cross-Modal Alignment [20.902935570581207]
We introduce a Multimodal Alignment and Reconstruction Network (MARNet) to enhance the model's resistance to visual noise.
MARNet includes a cross-modal diffusion reconstruction module for smoothly and stably blending information across different domains.
Experiments conducted on two benchmark datasets, Vireo-Food172 and Ingredient-101, demonstrate that MARNet effectively improves the quality of image information extracted by the model.
arXiv Detail & Related papers (2024-07-26T16:30:18Z) - Curved Diffusion: A Generative Model With Optical Geometry Control [56.24220665691974]
The influence of different optical systems on the final scene appearance is frequently overlooked.
This study introduces a framework that intimately integrates a textto-image diffusion model with the particular lens used in image rendering.
arXiv Detail & Related papers (2023-11-29T13:06:48Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - FPANet: Frequency-based Video Demoireing using Frame-level Post
Alignment [6.507353572917133]
We propose a novel model called FPANet that learns filters in both frequency and spatial domains.
We demonstrate the effectiveness of our proposed method with a publicly available large-scale dataset.
arXiv Detail & Related papers (2023-01-18T06:37:24Z) - A Model-data-driven Network Embedding Multidimensional Features for
Tomographic SAR Imaging [5.489791364472879]
We propose a new model-data-driven network to achieve tomoSAR imaging based on multi-dimensional features.
We add two 2D processing modules, both convolutional encoder-decoder structures, to enhance multi-dimensional features of the imaging scene effectively.
Compared with the conventional CS-based FISTA method and DL-based gamma-Net method, the result of our proposed method has better performance on completeness while having decent imaging accuracy.
arXiv Detail & Related papers (2022-11-28T02:01:43Z) - Geo-SIC: Learning Deformable Geometric Shapes in Deep Image Classifiers [8.781861951759948]
This paper presents Geo-SIC, the first deep learning model to learn deformable shapes in a deformation space for an improved performance of image classification.
We introduce a newly designed framework that (i) simultaneously derives features from both image and latent shape spaces with large intra-class variations.
We develop a boosted classification network, equipped with an unsupervised learning of geometric shape representations.
arXiv Detail & Related papers (2022-10-25T01:55:17Z) - Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance
Consistency [59.427074701985795]
Single-view reconstruction typically rely on viewpoint annotations, silhouettes, the absence of background, multiple views of the same instance, a template shape, or symmetry.
We avoid all of these supervisions and hypotheses by leveraging explicitly the consistency between images of different object instances.
Our main contributions are two approaches to leverage cross-instance consistency: (i) progressive conditioning, a training strategy to gradually specialize the model from category to instances in a curriculum learning fashion; (ii) swap reconstruction, a loss enforcing consistency between instances having similar shape or texture.
arXiv Detail & Related papers (2022-04-21T17:47:35Z) - Pixel2Mesh++: 3D Mesh Generation and Refinement from Multi-View Images [82.32776379815712]
We study the problem of shape generation in 3D mesh representation from a small number of color images with or without camera poses.
We adopt to further improve the shape quality by leveraging cross-view information with a graph convolution network.
Our model is robust to the quality of the initial mesh and the error of camera pose, and can be combined with a differentiable function for test-time optimization.
arXiv Detail & Related papers (2022-04-21T03:42:31Z) - OSLO: On-the-Sphere Learning for Omnidirectional images and its
application to 360-degree image compression [59.58879331876508]
We study the learning of representation models for omnidirectional images and propose to use the properties of HEALPix uniform sampling of the sphere to redefine the mathematical tools used in deep learning models for omnidirectional images.
Our proposed on-the-sphere solution leads to a better compression gain that can save 13.7% of the bit rate compared to similar learned models applied to equirectangular images.
arXiv Detail & Related papers (2021-07-19T22:14:30Z) - Wavelet-Based Dual-Branch Network for Image Demoireing [148.91145614517015]
We design a wavelet-based dual-branch network (WDNet) with a spatial attention mechanism for image demoireing.
Our network removes moire patterns in the wavelet domain to separate the frequencies of moire patterns from the image content.
Experiments demonstrate the effectiveness of our method, and we further show that WDNet generalizes to removing moire artifacts on non-screen images.
arXiv Detail & Related papers (2020-07-14T16:44:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.