論文の概要: IMEX-Reg: Implicit-Explicit Regularization in the Function Space for Continual Learning
- arxiv url: http://arxiv.org/abs/2404.18161v1
- Date: Sun, 28 Apr 2024 12:25:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 17:33:28.948451
- Title: IMEX-Reg: Implicit-Explicit Regularization in the Function Space for Continual Learning
- Title(参考訳): IMEX-Reg:連続学習のための関数空間における暗黙の規則化
- Authors: Prashant Bhat, Bharath Renjith, Elahe Arani, Bahram Zonooz,
- Abstract要約: 連続学習(CL)は、これまで獲得した知識の破滅的な忘れが原因で、ディープニューラルネットワークの長年にわたる課題の1つである。
低バッファ状態下でのCLにおける経験リハーサルの一般化性能を改善するために,強い帰納バイアスを用いて人間がどのように学習するかに着想を得たIMEX-Regを提案する。
- 参考スコア(独自算出の注目度): 17.236861687708096
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Continual learning (CL) remains one of the long-standing challenges for deep neural networks due to catastrophic forgetting of previously acquired knowledge. Although rehearsal-based approaches have been fairly successful in mitigating catastrophic forgetting, they suffer from overfitting on buffered samples and prior information loss, hindering generalization under low-buffer regimes. Inspired by how humans learn using strong inductive biases, we propose IMEX-Reg to improve the generalization performance of experience rehearsal in CL under low buffer regimes. Specifically, we employ a two-pronged implicit-explicit regularization approach using contrastive representation learning (CRL) and consistency regularization. To further leverage the global relationship between representations learned using CRL, we propose a regularization strategy to guide the classifier toward the activation correlations in the unit hypersphere of the CRL. Our results show that IMEX-Reg significantly improves generalization performance and outperforms rehearsal-based approaches in several CL scenarios. It is also robust to natural and adversarial corruptions with less task-recency bias. Additionally, we provide theoretical insights to support our design decisions further.
- Abstract(参考訳): 連続学習(CL)は、これまで獲得した知識の破滅的な忘れが原因で、ディープニューラルネットワークの長年にわたる課題の1つである。
リハーサルベースのアプローチは破滅的な忘れを緩和するのにかなり成功したが、バッファリングされたサンプルの過度な適合と事前の情報損失に悩まされ、低バッファー条件下での一般化を妨げている。
低バッファ状態下でのCLにおける経験リハーサルの一般化性能を改善するために,強い帰納バイアスを用いて人間がどのように学習するかに着想を得たIMEX-Regを提案する。
具体的には、コントラスト表現学習(CRL)と一貫性正規化を用いた2段階の暗黙的-明示的正規化手法を用いる。
CRLを用いて学習した表現間のグローバルな関係をさらに活用するために,CRLの単位超球面における活性化相関に対して分類器を誘導する正規化戦略を提案する。
その結果、IMEX-Regは一般化性能を大幅に向上し、複数のCLシナリオにおいてリハーサルベースのアプローチよりも優れていた。
また、自然および敵対的な汚職に対して、タスク・レシーシのバイアスが少なくて堅牢である。
さらに、設計決定をさらに支援するための理論的洞察も提供します。
関連論文リスト
- ICL-TSVD: Bridging Theory and Practice in Continual Learning with Pre-trained Models [103.45785408116146]
連続学習(CL)は、連続的に提示される複数のタスクを解決できるモデルを訓練することを目的としている。
最近のCLアプローチは、ダウンストリームタスクをうまく一般化する大規模な事前学習モデルを活用することで、強力なパフォーマンスを実現している。
しかし、これらの手法には理論的保証がなく、予期せぬ失敗をしがちである。
私たちは、経験的に強いアプローチを原則化されたフレームワークに統合することで、このギャップを埋めます。
論文 参考訳(メタデータ) (2024-10-01T12:58:37Z) - Relaxed Contrastive Learning for Federated Learning [48.96253206661268]
本稿では,フェデレート学習におけるデータ不均一性の課題に対処する,新しいコントラスト学習フレームワークを提案する。
当社のフレームワークは,既存のフェデレート学習アプローチを,標準ベンチマークにおいて大きなマージンで上回ります。
論文 参考訳(メタデータ) (2024-01-10T04:55:24Z) - Self-regulating Prompts: Foundational Model Adaptation without
Forgetting [112.66832145320434]
本稿では,PromptSRCと呼ばれる自己正規化フレームワークを提案する。
PromptSRCはタスク固有の汎用表現とタスクに依存しない汎用表現の両方に最適化するプロンプトを導く。
論文 参考訳(メタデータ) (2023-07-13T17:59:35Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
対話型意思決定の一般的な枠組みの下で, サンプル高能率強化学習(RL)について検討した。
本稿では,探索とエクスプロイトの基本的なトレードオフを特徴付ける,新しい複雑性尺度である一般化エルダー係数(GEC)を提案する。
低 GEC の RL 問題は非常にリッチなクラスであり、これは低ベルマン楕円体次元問題、双線型クラス、低証人ランク問題、PO-双線型クラス、一般化正規PSR を仮定する。
論文 参考訳(メタデータ) (2022-11-03T16:42:40Z) - On the Effectiveness of Lipschitz-Driven Rehearsal in Continual Learning [17.179898279925155]
データの小さなプールに対する繰り返し最適化は、必然的に厳密で不安定な決定境界につながる。
リプシッツ・ドリヴエン・リハーサル(Lidschitz-DrivEn Rehearsal, LiDER)を提案する。
大規模な実験により,LiDERの適用はいくつかの最先端のリハーサルCL手法に安定した性能向上をもたらすことが示された。
論文 参考訳(メタデータ) (2022-10-12T17:45:13Z) - Local Feature Swapping for Generalization in Reinforcement Learning [0.0]
特徴写像のチャネル一貫性のある局所置換(CLOP)からなる新しい正規化手法を導入する。
提案手法は,空間的相関に頑健性をもたらし,強化学習における過度に適合する行動を防ぐのに役立つ。
我々はOpenAI Procgen Benchmarkで、CLOP法で訓練されたRLエージェントが、視覚的変化に対する堅牢性と、より優れた一般化特性を示すことを示した。
論文 参考訳(メタデータ) (2022-04-13T13:12:51Z) - Contextualize Me -- The Case for Context in Reinforcement Learning [49.794253971446416]
文脈強化学習(cRL)は、このような変化を原則的にモデル化するためのフレームワークを提供する。
我々は,cRLが有意義なベンチマークや一般化タスクに関する構造化推論を通じて,RLのゼロショット一般化の改善にどのように貢献するかを示す。
論文 参考訳(メタデータ) (2022-02-09T15:01:59Z) - Improving Zero-shot Generalization in Offline Reinforcement Learning
using Generalized Similarity Functions [34.843526573355746]
強化学習(Reinforcement Learning, RL)エージェントは、複雑な逐次意思決定タスクの解決に広く用いられているが、訓練中に見えないシナリオに一般化することが困難である。
RLにおける一般化のためのオンラインアルゴリズムの性能は、観測間の類似性の評価が不十分なため、オフライン環境では妨げられることを示す。
本稿では, 一般化類似度関数(GSF)と呼ばれる新しい理論的動機付けフレームワークを提案する。このフレームワークは, 競合学習を用いてオフラインのRLエージェントを訓練し, 期待される将来の行動の類似性に基づいて観測を集約する。
論文 参考訳(メタデータ) (2021-11-29T15:42:54Z) - Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit
Partial Observability [92.95794652625496]
総合化は強化学習システムの展開における中心的な課題である。
限られた訓練条件から検査条件を特定できないように一般化することは、暗黙的な部分観察可能性をもたらすことを示す。
我々は、RLにおける一般化の問題を、部分的に観察されたマルコフ決定過程の解法として再考した。
論文 参考訳(メタデータ) (2021-07-13T17:59:25Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
本稿では,RLエージェントのより優れた一般化を実現するために,情報理論正則化目標とアニーリングに基づく最適化手法を提案する。
迷路ナビゲーションからロボットタスクまで、さまざまな領域において、我々のアプローチの極端な一般化の利点を実証する。
この研究は、タスク解決のために冗長な情報を徐々に取り除き、RLの一般化を改善するための原則化された方法を提供する。
論文 参考訳(メタデータ) (2020-08-03T02:24:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。