IMEX-Reg: Implicit-Explicit Regularization in the Function Space for Continual Learning
- URL: http://arxiv.org/abs/2404.18161v1
- Date: Sun, 28 Apr 2024 12:25:09 GMT
- Title: IMEX-Reg: Implicit-Explicit Regularization in the Function Space for Continual Learning
- Authors: Prashant Bhat, Bharath Renjith, Elahe Arani, Bahram Zonooz,
- Abstract summary: Continual learning (CL) remains one of the long-standing challenges for deep neural networks due to catastrophic forgetting of previously acquired knowledge.
Inspired by how humans learn using strong inductive biases, we propose IMEX-Reg to improve the generalization performance of experience rehearsal in CL under low buffer regimes.
- Score: 17.236861687708096
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Continual learning (CL) remains one of the long-standing challenges for deep neural networks due to catastrophic forgetting of previously acquired knowledge. Although rehearsal-based approaches have been fairly successful in mitigating catastrophic forgetting, they suffer from overfitting on buffered samples and prior information loss, hindering generalization under low-buffer regimes. Inspired by how humans learn using strong inductive biases, we propose IMEX-Reg to improve the generalization performance of experience rehearsal in CL under low buffer regimes. Specifically, we employ a two-pronged implicit-explicit regularization approach using contrastive representation learning (CRL) and consistency regularization. To further leverage the global relationship between representations learned using CRL, we propose a regularization strategy to guide the classifier toward the activation correlations in the unit hypersphere of the CRL. Our results show that IMEX-Reg significantly improves generalization performance and outperforms rehearsal-based approaches in several CL scenarios. It is also robust to natural and adversarial corruptions with less task-recency bias. Additionally, we provide theoretical insights to support our design decisions further.
Related papers
- ICL-TSVD: Bridging Theory and Practice in Continual Learning with Pre-trained Models [103.45785408116146]
Continual learning (CL) aims to train a model that can solve multiple tasks presented sequentially.
Recent CL approaches have achieved strong performance by leveraging large pre-trained models that generalize well to downstream tasks.
However, such methods lack theoretical guarantees, making them prone to unexpected failures.
We bridge this gap by integrating an empirically strong approach into a principled framework, designed to prevent forgetting.
arXiv Detail & Related papers (2024-10-01T12:58:37Z) - Relaxed Contrastive Learning for Federated Learning [48.96253206661268]
We propose a novel contrastive learning framework to address the challenges of data heterogeneity in federated learning.
Our framework outperforms all existing federated learning approaches by huge margins on the standard benchmarks.
arXiv Detail & Related papers (2024-01-10T04:55:24Z) - Self-regulating Prompts: Foundational Model Adaptation without
Forgetting [112.66832145320434]
We introduce a self-regularization framework for prompting called PromptSRC.
PromptSRC guides the prompts to optimize for both task-specific and task-agnostic general representations.
arXiv Detail & Related papers (2023-07-13T17:59:35Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
We study sample efficient reinforcement learning (RL) under the general framework of interactive decision making.
We propose a novel complexity measure, generalized eluder coefficient (GEC), which characterizes the fundamental tradeoff between exploration and exploitation.
We show that RL problems with low GEC form a remarkably rich class, which subsumes low Bellman eluder dimension problems, bilinear class, low witness rank problems, PO-bilinear class, and generalized regular PSR.
arXiv Detail & Related papers (2022-11-03T16:42:40Z) - On the Effectiveness of Lipschitz-Driven Rehearsal in Continual Learning [17.179898279925155]
Repeated optimization on a small pool of data inevitably leads to tight and unstable decision boundaries.
We propose Lipschitz-DrivEn Rehearsal (LiDER), a surrogate objective that induces smoothness in the backbone network.
By means of extensive experiments, we show that applying LiDER delivers a stable performance gain to several state-of-the-art rehearsal CL methods.
arXiv Detail & Related papers (2022-10-12T17:45:13Z) - Local Feature Swapping for Generalization in Reinforcement Learning [0.0]
We introduce a new regularization technique consisting of channel-consistent local permutations (CLOP) of the feature maps.
The proposed permutations induce robustness to spatial correlations and help prevent overfitting behaviors in reinforcement learning.
We demonstrate, on the OpenAI Procgen Benchmark, that RL agents trained with the CLOP method exhibit robustness to visual changes and better generalization properties.
arXiv Detail & Related papers (2022-04-13T13:12:51Z) - Contextualize Me -- The Case for Context in Reinforcement Learning [49.794253971446416]
Contextual Reinforcement Learning (cRL) provides a framework to model such changes in a principled manner.
We show how cRL contributes to improving zero-shot generalization in RL through meaningful benchmarks and structured reasoning about generalization tasks.
arXiv Detail & Related papers (2022-02-09T15:01:59Z) - Improving Zero-shot Generalization in Offline Reinforcement Learning
using Generalized Similarity Functions [34.843526573355746]
Reinforcement learning (RL) agents are widely used for solving complex sequential decision making tasks, but exhibit difficulty in generalizing to scenarios not seen during training.
We show that performance of online algorithms for generalization in RL can be hindered in the offline setting due to poor estimation of similarity between observations.
We propose a new theoretically-motivated framework called Generalized Similarity Functions (GSF), which uses contrastive learning to train an offline RL agent to aggregate observations based on the similarity of their expected future behavior.
arXiv Detail & Related papers (2021-11-29T15:42:54Z) - Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit
Partial Observability [92.95794652625496]
Generalization is a central challenge for the deployment of reinforcement learning systems.
We show that generalization to unseen test conditions from a limited number of training conditions induces implicit partial observability.
We recast the problem of generalization in RL as solving the induced partially observed Markov decision process.
arXiv Detail & Related papers (2021-07-13T17:59:25Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
We propose an information theoretic regularization objective and an annealing-based optimization method to achieve better generalization ability in RL agents.
We demonstrate the extreme generalization benefits of our approach in different domains ranging from maze navigation to robotic tasks.
This work provides a principled way to improve generalization in RL by gradually removing information that is redundant for task-solving.
arXiv Detail & Related papers (2020-08-03T02:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.