SOUL: Unlocking the Power of Second-Order Optimization for LLM Unlearning
- URL: http://arxiv.org/abs/2404.18239v4
- Date: Mon, 24 Jun 2024 20:24:53 GMT
- Title: SOUL: Unlocking the Power of Second-Order Optimization for LLM Unlearning
- Authors: Jinghan Jia, Yihua Zhang, Yimeng Zhang, Jiancheng Liu, Bharat Runwal, James Diffenderfer, Bhavya Kailkhura, Sijia Liu,
- Abstract summary: Large Language Models (LLMs) have highlighted the necessity of effective unlearning mechanisms to comply with data regulations and ethical AI practices.
While interest in studying LLM unlearning is growing, the impact of the choice for LLM unlearning remains unexplored.
We shed light on the significance of selection in LLM unlearning for the first time, establishing a clear connection between second-order optimization and influence unlearning.
- Score: 30.25610464801255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have highlighted the necessity of effective unlearning mechanisms to comply with data regulations and ethical AI practices. LLM unlearning aims at removing undesired data influences and associated model capabilities without compromising utility beyond the scope of unlearning. While interest in studying LLM unlearning is growing, the impact of the optimizer choice for LLM unlearning remains unexplored. In this work, we shed light on the significance of optimizer selection in LLM unlearning for the first time, establishing a clear connection between second-order optimization and influence unlearning (a classical approach using influence functions to update the model for data influence removal). This insight propels us to develop a second-order optimization-based LLM unlearning framework, termed Second-Order UnLearning (SOUL), which extends the static, one-shot model update using influence unlearning to a dynamic, iterative unlearning process. Our extensive experiments show that SOUL consistently outperforms conventional first-order methods across various unlearning tasks, models, and metrics, indicating that second-order optimization offers an effective and broadly applicable solution for LLM unlearning. Codes are available at https://github.com/OPTML-Group/SOUL.
Related papers
- Explainable LLM-driven Multi-dimensional Distillation for E-Commerce Relevance Learning [20.569157915157817]
We propose an Explainable LLM-driven Multi-dimensional Distillation framework for e-commerce relevance learning.
Our proposed framework significantly enhances e-commerce relevance learning performance and user experience.
arXiv Detail & Related papers (2024-11-20T05:30:15Z) - WAGLE: Strategic Weight Attribution for Effective and Modular Unlearning in Large Language Models [26.07431044262102]
This paper explores how model weights interact with unlearning processes in large language models (LLMs)
We design the weight attribution-guided LLM unlearning method, WAGLE, which unveils the interconnections between 'influence' of weights and 'influence' of data to forget and retain.
arXiv Detail & Related papers (2024-10-23T02:22:07Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.
Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.
We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - PISTOL: Dataset Compilation Pipeline for Structural Unlearning of LLMs [31.16117964915814]
Machine unlearning, which seeks to erase specific data stored in the pre-trained or fine-tuned models, has emerged as a crucial protective measure for LLMs.
To facilitate the development of structural unlearning methods, we propose PISTOL, a pipeline for compiling multi-scenario datasets.
We conduct benchmarks with four distinct unlearning methods on both Llama2-7B and Mistral-7B models.
arXiv Detail & Related papers (2024-06-24T17:22:36Z) - Split, Unlearn, Merge: Leveraging Data Attributes for More Effective Unlearning in LLMs [18.629717934007513]
"SPlit, UNlearn, MerGE" (SPUNGE) is a framework that can be used with any unlearning method to amplify its effectiveness.
We empirically demonstrate that SPUNGE significantly improves the performance of two recent unlearning methods on state-of-the-art LLMs.
arXiv Detail & Related papers (2024-06-17T17:35:52Z) - Are Large Language Models Good Prompt Optimizers? [65.48910201816223]
We conduct a study to uncover the actual mechanism of LLM-based Prompt Optimization.
Our findings reveal that the LLMs struggle to identify the true causes of errors during reflection, tending to be biased by their own prior knowledge.
We introduce a new "Automatic Behavior Optimization" paradigm, which directly optimize the target model's behavior in a more controllable manner.
arXiv Detail & Related papers (2024-02-03T09:48:54Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
Large language models (LLMs) have achieved significant progress from pre-training on and memorizing a wide range of textual data.
This process might suffer from privacy issues and violations of data protection regulations.
We propose an efficient unlearning framework that could efficiently update LLMs without having to retrain the whole model after data removals.
arXiv Detail & Related papers (2023-10-31T03:35:59Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.