Machine Learning for Blockchain Data Analysis: Progress and Opportunities
- URL: http://arxiv.org/abs/2404.18251v1
- Date: Sun, 28 Apr 2024 17:18:08 GMT
- Title: Machine Learning for Blockchain Data Analysis: Progress and Opportunities
- Authors: Poupak Azad, Cuneyt Gurcan Akcora, Arijit Khan,
- Abstract summary: blockchain datasets encompass multiple layers of interactions across real-world entities, e.g., human users, autonomous programs, and smart contracts.
These unique characteristics present both opportunities and challenges for machine learning on blockchain data.
This paper serves as a comprehensive resource for researchers, practitioners, and policymakers, offering a roadmap for navigating this dynamic and transformative field.
- Score: 9.07520594836878
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blockchain technology has rapidly emerged to mainstream attention, while its publicly accessible, heterogeneous, massive-volume, and temporal data are reminiscent of the complex dynamics encountered during the last decade of big data. Unlike any prior data source, blockchain datasets encompass multiple layers of interactions across real-world entities, e.g., human users, autonomous programs, and smart contracts. Furthermore, blockchain's integration with cryptocurrencies has introduced financial aspects of unprecedented scale and complexity such as decentralized finance, stablecoins, non-fungible tokens, and central bank digital currencies. These unique characteristics present both opportunities and challenges for machine learning on blockchain data. On one hand, we examine the state-of-the-art solutions, applications, and future directions associated with leveraging machine learning for blockchain data analysis critical for the improvement of blockchain technology such as e-crime detection and trends prediction. On the other hand, we shed light on the pivotal role of blockchain by providing vast datasets and tools that can catalyze the growth of the evolving machine learning ecosystem. This paper serves as a comprehensive resource for researchers, practitioners, and policymakers, offering a roadmap for navigating this dynamic and transformative field.
Related papers
- Mastering AI: Big Data, Deep Learning, and the Evolution of Large Language Models -- Blockchain and Applications [17.293955748551053]
The article begins with an introduction to cryptography fundamentals.
It covers topics such as proof-of-work, proof-of-stake, and smart contracts.
The article concludes by addressing the current state of academic research on blockchain.
arXiv Detail & Related papers (2024-10-14T02:56:36Z) - Research on Data Right Confirmation Mechanism of Federated Learning based on Blockchain [0.069060054915724]
Federated learning can solve the privacy protection problem in distributed data mining and machine learning.
This paper proposes a data ownership confirmation mechanism based on blockchain and smart contract.
arXiv Detail & Related papers (2024-09-13T02:02:18Z) - Quantifying the Blockchain Trilemma: A Comparative Analysis of Algorand, Ethereum 2.0, and Beyond [4.605490094506685]
This study evaluates and compares two leading proof-of-stake (PoS) systems, Algorand and 2.0.
We analyze each platform's strategies in a structured manner to understand their effectiveness in addressing trilemma challenges.
arXiv Detail & Related papers (2024-07-19T14:15:29Z) - IT Strategic alignment in the decentralized finance (DeFi): CBDC and digital currencies [49.1574468325115]
Decentralized finance (DeFi) is a disruptive-based financial infrastructure.
This paper seeks to answer two main questions 1) What are the common IT elements in the DeFi?
And 2) How the elements to the IT strategic alignment in DeFi?
arXiv Detail & Related papers (2024-05-17T10:19:20Z) - Blockchains for Internet of Things: Fundamentals, Applications, and Challenges [38.29453164670072]
Not every blockchain system is suitable for specific IoT applications.
Public blockchains are not suitable for storing sensitive data.
We explore the blockchain's application in three pivotal IoT areas: edge AI, communications, and healthcare.
arXiv Detail & Related papers (2024-05-08T04:25:57Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - Extracting Blockchain Concepts from Text [0.5520082338220947]
The main objective of this project was to apply machine learning models to extract information from whitepapers and academic articles focused on the blockchain area to organize this information and aid users to navigate the space.
arXiv Detail & Related papers (2023-05-07T00:16:30Z) - Federated Learning for Open Banking [42.05232310057235]
In the near future, it is foreseeable to have decentralized data ownership in the finance sector using federated learning.
This chapter will discuss the possible challenges for applying federated learning in the context of open banking.
arXiv Detail & Related papers (2021-08-24T14:06:16Z) - Quantum-resistance in blockchain networks [46.63333997460008]
This paper describes the work carried out by the Inter-American Development Bank, the IDB Lab, LACChain, Quantum Computing (CQC), and Tecnologico de Monterrey to identify and eliminate quantum threats in blockchain networks.
The advent of quantum computing threatens internet protocols and blockchain networks because they utilize non-quantum resistant cryptographic algorithms.
arXiv Detail & Related papers (2021-06-11T23:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.