Research on Data Right Confirmation Mechanism of Federated Learning based on Blockchain
- URL: http://arxiv.org/abs/2409.08476v1
- Date: Fri, 13 Sep 2024 02:02:18 GMT
- Title: Research on Data Right Confirmation Mechanism of Federated Learning based on Blockchain
- Authors: Xiaogang Cheng, Ren Guo,
- Abstract summary: Federated learning can solve the privacy protection problem in distributed data mining and machine learning.
This paper proposes a data ownership confirmation mechanism based on blockchain and smart contract.
- Score: 0.069060054915724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning can solve the privacy protection problem in distributed data mining and machine learning, and how to protect the ownership, use and income rights of all parties involved in federated learning is an important issue. This paper proposes a federated learning data ownership confirmation mechanism based on blockchain and smart contract, which uses decentralized blockchain technology to save the contribution of each participant on the blockchain, and distributes the benefits of federated learning results through the blockchain. In the local simulation environment of the blockchain, the relevant smart contracts and data structures are simulated and implemented, and the feasibility of the scheme is preliminarily demonstrated.
Related papers
- Machine Learning for Blockchain Data Analysis: Progress and Opportunities [9.07520594836878]
blockchain datasets encompass multiple layers of interactions across real-world entities, e.g., human users, autonomous programs, and smart contracts.
These unique characteristics present both opportunities and challenges for machine learning on blockchain data.
This paper serves as a comprehensive resource for researchers, practitioners, and policymakers, offering a roadmap for navigating this dynamic and transformative field.
arXiv Detail & Related papers (2024-04-28T17:18:08Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
We design a Graph Attention Network (GAT)-based reliable block propagation optimization framework for blockchain-enabled Web 3.0.
To achieve the reliability of block propagation, we introduce a reputation mechanism based on the subjective logic model.
Considering that the GAT possesses the excellent ability to process graph-structured data, we utilize the GAT with reinforcement learning to obtain the optimal block propagation trajectory.
arXiv Detail & Related papers (2024-03-20T01:58:38Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
Federated unlearning is a promising paradigm for protecting the data ownership of distributed clients.
Existing works require central servers to retain the historical model parameters from distributed clients.
This paper proposes a new blockchain-enabled trustworthy federated unlearning framework.
arXiv Detail & Related papers (2024-01-29T07:04:48Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - Blockchain-Based Federated Learning: Incentivizing Data Sharing and
Penalizing Dishonest Behavior [0.0]
This paper proposes a comprehensive framework that integrates data trust in federated learning with InterPlanetary File System, blockchain, and smart contracts.
The proposed model is effective in improving the accuracy of federated learning models while ensuring the security and fairness of the data-sharing process.
The research paper also presents a decentralized federated learning platform that successfully trained a CNN model on the MNIST dataset.
arXiv Detail & Related papers (2023-07-19T23:05:49Z) - A Survey on Blockchain-Based Federated Learning and Data Privacy [1.0499611180329802]
Federated learning is a decentralized machine learning paradigm that allows multiple clients to collaborate by leveraging local computational power and the models transmission.
On the other hand, federated learning has the drawback of data leakage due to the lack of privacy-preserving mechanisms employed during storage, transfer, and sharing.
This survey aims to compare the performance and security of various data privacy mechanisms adopted in blockchain-based federated learning architectures.
arXiv Detail & Related papers (2023-06-29T23:43:25Z) - Federated Learning for Open Banking [42.05232310057235]
In the near future, it is foreseeable to have decentralized data ownership in the finance sector using federated learning.
This chapter will discuss the possible challenges for applying federated learning in the context of open banking.
arXiv Detail & Related papers (2021-08-24T14:06:16Z) - Federated Learning using Smart Contracts on Blockchains, based on Reward
Driven Approach [0.0]
We show how smart contract based blockchain can be a very natural communication channel for federated learning.
We show how intuitive a measure of each agents' contribution can be built and integrated with the life cycle of the training and reward process.
arXiv Detail & Related papers (2021-07-19T12:51:22Z) - Resource Management for Blockchain-enabled Federated Learning: A Deep
Reinforcement Learning Approach [54.29213445674221]
Federated Learning (BFL) enables mobile devices to collaboratively train neural network models required by a Machine Learning Model Owner (MLMO)
The issue of BFL is that the mobile devices have energy and CPU constraints that may reduce the system lifetime and training efficiency.
We propose to use the Deep Reinforcement Learning (DRL) to derive the optimal decisions for theO.
arXiv Detail & Related papers (2020-04-08T16:29:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.