Align, Minimize and Diversify: A Source-Free Unsupervised Domain Adaptation Method for Handwritten Text Recognition
- URL: http://arxiv.org/abs/2404.18260v1
- Date: Sun, 28 Apr 2024 17:50:58 GMT
- Title: Align, Minimize and Diversify: A Source-Free Unsupervised Domain Adaptation Method for Handwritten Text Recognition
- Authors: MarĂa Alfaro-Contreras, Jorge Calvo-Zaragoza,
- Abstract summary: The Align, Minimize and Diversify (AMD) method is a Source-Free Unsupervised Domain Adaptation approach for Handwritten Text Recognition (HTR)
Our method explicitly eliminates the need to revisit the source data during adaptation by incorporating three distinct regularization terms.
Experimental results from several benchmarks demonstrated the effectiveness and robustness of AMD, showing it to be competitive and often outperforming DA methods in HTR.
- Score: 11.080302144256164
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper serves to introduce the Align, Minimize and Diversify (AMD) method, a Source-Free Unsupervised Domain Adaptation approach for Handwritten Text Recognition (HTR). This framework decouples the adaptation process from the source data, thus not only sidestepping the resource-intensive retraining process but also making it possible to leverage the wealth of pre-trained knowledge encoded in modern Deep Learning architectures. Our method explicitly eliminates the need to revisit the source data during adaptation by incorporating three distinct regularization terms: the Align term, which reduces the feature distribution discrepancy between source and target data, ensuring the transferability of the pre-trained representation; the Minimize term, which encourages the model to make assertive predictions, pushing the outputs towards one-hot-like distributions in order to minimize prediction uncertainty, and finally, the Diversify term, which safeguards against the degeneracy in predictions by promoting varied and distinctive sequences throughout the target data, preventing informational collapse. Experimental results from several benchmarks demonstrated the effectiveness and robustness of AMD, showing it to be competitive and often outperforming DA methods in HTR.
Related papers
- Source-Free Domain-Invariant Performance Prediction [68.39031800809553]
We propose a source-free approach centred on uncertainty-based estimation, using a generative model for calibration in the absence of source data.
Our experiments on benchmark object recognition datasets reveal that existing source-based methods fall short with limited source sample availability.
Our approach significantly outperforms the current state-of-the-art source-free and source-based methods, affirming its effectiveness in domain-invariant performance estimation.
arXiv Detail & Related papers (2024-08-05T03:18:58Z) - Distributional Shift-Aware Off-Policy Interval Estimation: A Unified
Error Quantification Framework [8.572441599469597]
We study high-confidence off-policy evaluation in the context of infinite-horizon Markov decision processes.
The objective is to establish a confidence interval (CI) for the target policy value using only offline data pre-collected from unknown behavior policies.
We show that our algorithm is sample-efficient, error-robust, and provably convergent even in non-linear function approximation settings.
arXiv Detail & Related papers (2023-09-23T06:35:44Z) - Unsupervised Accuracy Estimation of Deep Visual Models using
Domain-Adaptive Adversarial Perturbation without Source Samples [1.1852406625172216]
We propose a new framework to estimate model accuracy on unlabeled target data without access to source data.
Our approach measures the disagreement rate between the source hypothesis and the target pseudo-labeling function.
Our proposed source-free framework effectively addresses the challenging distribution shift scenarios and outperforms existing methods requiring source data and labels for training.
arXiv Detail & Related papers (2023-07-19T15:33:11Z) - Fair mapping [0.0]
We propose a novel pre-processing method based on the transformation of the distribution of protected groups onto a chosen target one.
We leverage on the recent works of the Wasserstein GAN and AttGAN frameworks to achieve the optimal transport of data points.
Our proposed approach, preserves the interpretability of data and can be used without defining exactly the sensitive groups.
arXiv Detail & Related papers (2022-09-01T17:31:27Z) - Uncertainty-guided Source-free Domain Adaptation [77.3844160723014]
Source-free domain adaptation (SFDA) aims to adapt a classifier to an unlabelled target data set by only using a pre-trained source model.
We propose quantifying the uncertainty in the source model predictions and utilizing it to guide the target adaptation.
arXiv Detail & Related papers (2022-08-16T08:03:30Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.