Unsupervised Accuracy Estimation of Deep Visual Models using
Domain-Adaptive Adversarial Perturbation without Source Samples
- URL: http://arxiv.org/abs/2307.10062v1
- Date: Wed, 19 Jul 2023 15:33:11 GMT
- Title: Unsupervised Accuracy Estimation of Deep Visual Models using
Domain-Adaptive Adversarial Perturbation without Source Samples
- Authors: JoonHo Lee, Jae Oh Woo, Hankyu Moon and Kwonho Lee
- Abstract summary: We propose a new framework to estimate model accuracy on unlabeled target data without access to source data.
Our approach measures the disagreement rate between the source hypothesis and the target pseudo-labeling function.
Our proposed source-free framework effectively addresses the challenging distribution shift scenarios and outperforms existing methods requiring source data and labels for training.
- Score: 1.1852406625172216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deploying deep visual models can lead to performance drops due to the
discrepancies between source and target distributions. Several approaches
leverage labeled source data to estimate target domain accuracy, but accessing
labeled source data is often prohibitively difficult due to data
confidentiality or resource limitations on serving devices. Our work proposes a
new framework to estimate model accuracy on unlabeled target data without
access to source data. We investigate the feasibility of using pseudo-labels
for accuracy estimation and evolve this idea into adopting recent advances in
source-free domain adaptation algorithms. Our approach measures the
disagreement rate between the source hypothesis and the target pseudo-labeling
function, adapted from the source hypothesis. We mitigate the impact of
erroneous pseudo-labels that may arise due to a high ideal joint hypothesis
risk by employing adaptive adversarial perturbation on the input of the target
model. Our proposed source-free framework effectively addresses the challenging
distribution shift scenarios and outperforms existing methods requiring source
data and labels for training.
Related papers
- Source-Free Domain-Invariant Performance Prediction [68.39031800809553]
We propose a source-free approach centred on uncertainty-based estimation, using a generative model for calibration in the absence of source data.
Our experiments on benchmark object recognition datasets reveal that existing source-based methods fall short with limited source sample availability.
Our approach significantly outperforms the current state-of-the-art source-free and source-based methods, affirming its effectiveness in domain-invariant performance estimation.
arXiv Detail & Related papers (2024-08-05T03:18:58Z) - Uncertainty-guided Source-free Domain Adaptation [77.3844160723014]
Source-free domain adaptation (SFDA) aims to adapt a classifier to an unlabelled target data set by only using a pre-trained source model.
We propose quantifying the uncertainty in the source model predictions and utilizing it to guide the target adaptation.
arXiv Detail & Related papers (2022-08-16T08:03:30Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Unsupervised Adaptation of Semantic Segmentation Models without Source
Data [14.66682099621276]
We consider the novel problem of unsupervised domain adaptation of source models, without access to the source data for semantic segmentation.
We propose a self-training approach to extract the knowledge from the source model.
Our framework is able to achieve significant performance gains compared to directly applying the source model on the target data.
arXiv Detail & Related papers (2021-12-04T15:13:41Z) - Source-Free Domain Adaptive Fundus Image Segmentation with Denoised
Pseudo-Labeling [56.98020855107174]
Domain adaptation typically requires to access source domain data to utilize their distribution information for domain alignment with the target data.
In many real-world scenarios, the source data may not be accessible during the model adaptation in the target domain due to privacy issue.
We present a novel denoised pseudo-labeling method for this problem, which effectively makes use of the source model and unlabeled target data.
arXiv Detail & Related papers (2021-09-19T06:38:21Z) - Unsupervised Robust Domain Adaptation without Source Data [75.85602424699447]
We study the problem of robust domain adaptation in the context of unavailable target labels and source data.
We show a consistent performance improvement of over $10%$ in accuracy against the tested baselines on four benchmark datasets.
arXiv Detail & Related papers (2021-03-26T16:42:28Z) - Source Data-absent Unsupervised Domain Adaptation through Hypothesis
Transfer and Labeling Transfer [137.36099660616975]
Unsupervised adaptation adaptation (UDA) aims to transfer knowledge from a related but different well-labeled source domain to a new unlabeled target domain.
Most existing UDA methods require access to the source data, and thus are not applicable when the data are confidential and not shareable due to privacy concerns.
This paper aims to tackle a realistic setting with only a classification model available trained over, instead of accessing to the source data.
arXiv Detail & Related papers (2020-12-14T07:28:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.