Joint Energy and Latency Optimization in Federated Learning over Cell-Free Massive MIMO Networks
- URL: http://arxiv.org/abs/2404.18287v1
- Date: Sun, 28 Apr 2024 19:24:58 GMT
- Title: Joint Energy and Latency Optimization in Federated Learning over Cell-Free Massive MIMO Networks
- Authors: Afsaneh Mahmoudi, Mahmoud Zaher, Emil Björnson,
- Abstract summary: Federated learning (FL) is a distributed learning paradigm wherein users exchange FL models with a server instead of raw datasets.
Cell-free massive multiple-input multiple-output(CFmMIMO) is a promising architecture for implementing FL because it serves many users on the same time/frequency resources.
We propose an uplink power allocation scheme in FL over CFmMIMO by considering the effect of each user's power on the energy and latency of other users.
- Score: 36.6868658064971
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a distributed learning paradigm wherein users exchange FL models with a server instead of raw datasets, thereby preserving data privacy and reducing communication overhead. However, the increased number of FL users may hinder completing large-scale FL over wireless networks due to high imposed latency. Cell-free massive multiple-input multiple-output~(CFmMIMO) is a promising architecture for implementing FL because it serves many users on the same time/frequency resources. While CFmMIMO enhances energy efficiency through spatial multiplexing and collaborative beamforming, it remains crucial to meticulously allocate uplink transmission powers to the FL users. In this paper, we propose an uplink power allocation scheme in FL over CFmMIMO by considering the effect of each user's power on the energy and latency of other users to jointly minimize the users' uplink energy and the latency of FL training. The proposed solution algorithm is based on the coordinate gradient descent method. Numerical results show that our proposed method outperforms the well-known max-sum rate by increasing up to~$27$\% and max-min energy efficiency of the Dinkelbach method by increasing up to~$21$\% in terms of test accuracy while having limited uplink energy and latency budget for FL over CFmMIMO.
Related papers
- FLrce: Resource-Efficient Federated Learning with Early-Stopping Strategy [7.963276533979389]
Federated Learning (FL) achieves great popularity in the Internet of Things (IoT)
We present FLrce, an efficient FL framework with a relationship-based client selection and early-stopping strategy.
Experiment results show that, compared with existing efficient FL frameworks, FLrce improves the computation and communication efficiency by at least 30% and 43% respectively.
arXiv Detail & Related papers (2023-10-15T10:13:44Z) - User Assignment and Resource Allocation for Hierarchical Federated
Learning over Wireless Networks [20.09415156099031]
Hierarchical FL (HFL) can reduce energy consumption and latency through effective resource allocation and appropriate user assignment.
This article proposes a spectrum resource optimization algorithm (SROA) and a two-stage CPU algorithm (TSIA) for HFL.
Experimental results demonstrate the superiority of the proposed HFL framework over existing studies in energy and latency reduction.
arXiv Detail & Related papers (2023-09-17T12:10:39Z) - Adaptive Federated Pruning in Hierarchical Wireless Networks [69.6417645730093]
Federated Learning (FL) is a privacy-preserving distributed learning framework where a server aggregates models updated by multiple devices without accessing their private datasets.
In this paper, we introduce model pruning for HFL in wireless networks to reduce the neural network scale.
We show that our proposed HFL with model pruning achieves similar learning accuracy compared with the HFL without model pruning and reduces about 50 percent communication cost.
arXiv Detail & Related papers (2023-05-15T22:04:49Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
Federated Learning (FL) can be used in mobile edge networks to train machine learning models in a distributed manner.
Recent FL has been interpreted within a Model-Agnostic Meta-Learning (MAML) framework, which brings FL significant advantages in fast adaptation and convergence over heterogeneous datasets.
This paper addresses how much benefit MAML brings to FL and how to maximize such benefit over mobile edge networks.
arXiv Detail & Related papers (2023-03-23T02:42:10Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - FedFog: Network-Aware Optimization of Federated Learning over Wireless
Fog-Cloud Systems [40.421253127588244]
Federated learning (FL) is capable of performing large distributed machine learning tasks across multiple edge users by periodically aggregating trained local parameters.
We first propose an efficient FL algorithm (called FedFog) to perform the local aggregation of gradient parameters at fog servers and global training update at the cloud.
arXiv Detail & Related papers (2021-07-04T08:03:15Z) - Multi-Task Federated Learning for Personalised Deep Neural Networks in
Edge Computing [23.447883712141422]
Federated Learning (FL) is an emerging approach for collaboratively training Deep Neural Networks (DNNs) on mobile devices.
Previous works have shown that non-Independent and Identically Distributed (non-IID) user data harms the convergence speed of the FL algorithms.
We propose a Multi-Task FL (MTFL) algorithm that introduces non-federated Batch-Normalization layers into the federated DNN.
arXiv Detail & Related papers (2020-07-17T21:11:01Z) - Delay Minimization for Federated Learning Over Wireless Communication
Networks [172.42768672943365]
The problem of delay computation for federated learning (FL) over wireless communication networks is investigated.
A bisection search algorithm is proposed to obtain the optimal solution.
Simulation results show that the proposed algorithm can reduce delay by up to 27.3% compared to conventional FL methods.
arXiv Detail & Related papers (2020-07-05T19:00:07Z) - Convergence Time Optimization for Federated Learning over Wireless
Networks [160.82696473996566]
A wireless network is considered in which wireless users transmit their local FL models (trained using their locally collected data) to a base station (BS)
The BS, acting as a central controller, generates a global FL model using the received local FL models and broadcasts it back to all users.
Due to the limited number of resource blocks (RBs) in a wireless network, only a subset of users can be selected to transmit their local FL model parameters to the BS.
Since each user has unique training data samples, the BS prefers to include all local user FL models to generate a converged global FL model.
arXiv Detail & Related papers (2020-01-22T01:55:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.