論文の概要: User Welfare Optimization in Recommender Systems with Competing Content Creators
- arxiv url: http://arxiv.org/abs/2404.18319v1
- Date: Sun, 28 Apr 2024 21:09:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 01:28:12.504717
- Title: User Welfare Optimization in Recommender Systems with Competing Content Creators
- Title(参考訳): コンテントクリエータと競合するレコメンダシステムにおけるユーザ福祉最適化
- Authors: Fan Yao, Yiming Liao, Mingzhe Wu, Chuanhao Li, Yan Zhu, James Yang, Qifan Wang, Haifeng Xu, Hongning Wang,
- Abstract要約: 本研究では,コンテンツ制作者間での競争ゲーム環境下で,システム側ユーザ福祉の最適化を行う。
本稿では,推奨コンテンツの満足度に基づいて,各ユーザの重みの列を動的に計算する,プラットフォームのためのアルゴリズムソリューションを提案する。
これらの重みはレコメンデーションポリシーやポストレコメンデーション報酬を調整するメカニズムの設計に利用され、それによってクリエイターのコンテンツ制作戦略に影響を与える。
- 参考スコア(独自算出の注目度): 65.25721571688369
- License:
- Abstract: Driven by the new economic opportunities created by the creator economy, an increasing number of content creators rely on and compete for revenue generated from online content recommendation platforms. This burgeoning competition reshapes the dynamics of content distribution and profoundly impacts long-term user welfare on the platform. However, the absence of a comprehensive picture of global user preference distribution often traps the competition, especially the creators, in states that yield sub-optimal user welfare. To encourage creators to best serve a broad user population with relevant content, it becomes the platform's responsibility to leverage its information advantage regarding user preference distribution to accurately signal creators. In this study, we perform system-side user welfare optimization under a competitive game setting among content creators. We propose an algorithmic solution for the platform, which dynamically computes a sequence of weights for each user based on their satisfaction of the recommended content. These weights are then utilized to design mechanisms that adjust the recommendation policy or the post-recommendation rewards, thereby influencing creators' content production strategies. To validate the effectiveness of our proposed method, we report our findings from a series of experiments, including: 1. a proof-of-concept negative example illustrating how creators' strategies converge towards sub-optimal states without platform intervention; 2. offline experiments employing our proposed intervention mechanisms on diverse datasets; and 3. results from a three-week online experiment conducted on a leading short-video recommendation platform.
- Abstract(参考訳): クリエーターエコノミーが生み出す新たな経済機会によって、オンラインコンテンツレコメンデーションプラットフォームが生み出す収益に頼り競争するコンテンツクリエーターが増えている。
この急成長する競争は、コンテンツ配信のダイナミクスを再認識させ、プラットフォーム上での長期的なユーザー福祉に大きな影響を及ぼす。
しかし、グローバルなユーザー嗜好分布の全体像が欠如していることは、しばしば競争、特にクリエーターが最適でないユーザー福祉をもたらす州に干渉する。
クリエーターが関連コンテンツで幅広いユーザー人口に最適なサービスを提供することを奨励するため、クリエーターに正確なシグナルを伝えるために、ユーザー嗜好分布に関する情報の優位性を活用することがプラットフォームの役割となる。
本研究では,コンテンツ制作者間での競争ゲーム環境下で,システム側ユーザ福祉の最適化を行う。
本稿では,推奨コンテンツの満足度に基づいて,各ユーザの重みの列を動的に計算する,プラットフォームのためのアルゴリズムソリューションを提案する。
これらの重みはレコメンデーションポリシーやポストレコメンデーション報酬を調整するメカニズムの設計に利用され、それによってクリエイターのコンテンツ制作戦略に影響を与える。
提案手法の有効性を検証するため,本研究の成果を以下を含む一連の実験から報告する。
1. プラットフォームを介さずに、クリエイターの戦略が準最適状態にどのように収束するかを示す概念実証の負の例。
2. 多様なデータセットに対する介入機構を用いたオフライン実験
3. 主要なショートビデオレコメンデーションプラットフォームで行われた3週間のオンライン実験の結果。
関連論文リスト
- Unveiling User Satisfaction and Creator Productivity Trade-Offs in Recommendation Platforms [68.51708490104687]
調査力の低い純粋に関連性の高い政策は、短期的ユーザの満足度を高めるが、コンテンツプールの長期的豊かさを損なうことを示す。
調査の結果,プラットフォーム上でのユーザの即時満足度と全体のコンテンツ生産との間には,根本的なトレードオフがあることが判明した。
論文 参考訳(メタデータ) (2024-10-31T07:19:22Z) - Bypassing the Popularity Bias: Repurposing Models for Better Long-Tail Recommendation [0.0]
我々は,オンラインコンテンツプラットフォーム上で,パブリッシャー間でより公平な露出分布を実現することを目的としている。
そこで本稿では,産業推薦システムの既存コンポーネントを再利用して,表現不足の出版社に価値ある露出を提供する手法を提案する。
論文 参考訳(メタデータ) (2024-09-17T15:40:55Z) - Incentivizing High-Quality Content in Online Recommender Systems [80.19930280144123]
プロデューサー間のゲームについて検討し、均衡で作成されたコンテンツを分析する。
HedgeやEXP3のような標準的なオンライン学習アルゴリズムは、残念なことにプロデューサに低品質コンテンツを作る動機を与えています。
論文 参考訳(メタデータ) (2023-06-13T00:55:10Z) - Online Learning in a Creator Economy [91.55437924091844]
われわれはクリエーター経済を、ユーザー、プラットフォーム、コンテンツクリエーターの3人組ゲームとして研究している。
私たちは、リターンベースの契約とフィーチャーベースの契約の2つのファミリーを分析します。
滑らかな仮定の下では、リターンベースの契約とレコメンデーションポリシーの協調最適化が後悔をもたらすことを示す。
論文 参考訳(メタデータ) (2023-05-19T01:58:13Z) - How Bad is Top-$K$ Recommendation under Competing Content Creators? [43.2268992294178]
我々は,アナーキー価格のレンズによるユーザ福祉保証について検討する。
創造者競争によるユーザ福祉損失のごく一部は、ユーザ決定におけるKドルとランダム性に応じて、常に小さな一定値で上限づけられていることが示される。
論文 参考訳(メタデータ) (2023-02-03T19:37:35Z) - Supply-Side Equilibria in Recommender Systems [43.140112226575646]
パーソナライズされたコンテンツレコメンデーションシステムにおけるサプライサイド均衡について検討する。
モデルの主な特徴は,生産者決定空間が多次元であり,ユーザベースが不均一である点である。
専門化は、生産者が均衡でポジティブな利益を得られることを示す。
論文 参考訳(メタデータ) (2022-06-27T17:52:16Z) - Feedback Shaping: A Modeling Approach to Nurture Content Creation [10.31854532203776]
コンテンツ消費者からのフィードバックがクリエーターにインセンティブを与えるかを予測するためのモデリング手法を提案する。
次に、このモデルを利用して、フィードバック分布を再構築することで、コンテンツクリエーターのニュースフィード体験を最適化する。
我々は、LinkedInのニュースフィードに展開されたユースケースを提示し、消費者の体験を損なうことなく、コンテンツ作成を大幅に改善するためにこのアプローチを使用しました。
論文 参考訳(メタデータ) (2021-06-21T22:53:16Z) - Dynamic Knapsack Optimization Towards Efficient Multi-Channel Sequential
Advertising [52.3825928886714]
我々は、動的knapsack問題として、シーケンシャルな広告戦略最適化を定式化する。
理論的に保証された二段階最適化フレームワークを提案し、元の最適化空間の解空間を大幅に削減する。
強化学習の探索効率を向上させるため,効果的な行動空間削減手法も考案した。
論文 参考訳(メタデータ) (2020-06-29T18:50:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。