SPECIAL: Synopsis Assisted Secure Collaborative Analytics
- URL: http://arxiv.org/abs/2404.18388v1
- Date: Mon, 29 Apr 2024 02:55:54 GMT
- Title: SPECIAL: Synopsis Assisted Secure Collaborative Analytics
- Authors: Chenghong Wang, Lina Qiu, Johes Bater, Yukui Luo,
- Abstract summary: SPECIAL is a secure collaborative analytics system that simultaneously ensures bounded privacy loss and advanced query planning.
It significantly outperforms cutting-edge SCAs, with up to 80X faster query times and over 900X smaller memory for complex queries.
It also achieves up to an 89X reduction in privacy loss under continual processing.
- Score: 6.5653818719859895
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Secure collaborative analytics (SCA) enable the processing of analytical SQL queries across multiple owners' data, even when direct data sharing is not feasible. Although essential for strong privacy, the large overhead from data-oblivious primitives in traditional SCA has hindered its practical adoption. Recent SCA variants that permit controlled leakages under differential privacy (DP) show a better balance between privacy and efficiency. However, they still face significant challenges, such as potentially unbounded privacy loss, suboptimal query planning, and lossy processing. To address these challenges, we introduce SPECIAL, the first SCA system that simultaneously ensures bounded privacy loss, advanced query planning, and lossless processing. SPECIAL employs a novel synopsis-assisted secure processing model, where a one-time privacy cost is spent to acquire private synopses (table statistics) from owner data. These synopses then allow SPECIAL to estimate (compaction) sizes for secure operations (e.g., filter, join) and index encrypted data without extra privacy loss. Crucially, these estimates and indexes can be prepared before runtime, thereby facilitating efficient query planning and accurate cost estimations. Moreover, by using one-sided noise mechanisms and private upper bound techniques, SPECIAL ensures strict lossless processing for complex queries (e.g., multi-join). Through a comprehensive benchmark, we show that SPECIAL significantly outperforms cutting-edge SCAs, with up to 80X faster query times and over 900X smaller memory for complex queries. Moreover, it also achieves up to an 89X reduction in privacy loss under continual processing.
Related papers
- Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
Collaborative inference among multiple wireless edge devices has the potential to significantly enhance Artificial Intelligence (AI) applications.
transmitting extracted features poses a significant privacy risk, as sensitive personal data can be exposed during the process.
We propose a novel privacy-preserving collaborative inference mechanism, wherein each edge device in the network secures the privacy of extracted features before transmitting them to a central server for inference.
arXiv Detail & Related papers (2024-10-25T18:11:02Z) - Private Approximate Query over Horizontal Data Federation [0.0]
Existing approaches rely on cryptography, which improves privacy, but at the expense of query response time.
We propose a new approach that considers a data distribution-aware online sampling technique to accelerate the execution of range queries.
Our solution is able of providing up to 8 times faster processing than the basic non-secure solution.
arXiv Detail & Related papers (2024-06-17T11:19:58Z) - Private Optimal Inventory Policy Learning for Feature-based Newsvendor with Unknown Demand [13.594765018457904]
This paper introduces a novel approach to estimate a privacy-preserving optimal inventory policy within the f-differential privacy framework.
We develop a clipped noisy gradient descent algorithm based on convolution smoothing for optimal inventory estimation.
Our numerical experiments demonstrate that the proposed new method can achieve desirable privacy protection with a marginal increase in cost.
arXiv Detail & Related papers (2024-04-23T19:15:43Z) - Provable Privacy with Non-Private Pre-Processing [56.770023668379615]
We propose a general framework to evaluate the additional privacy cost incurred by non-private data-dependent pre-processing algorithms.
Our framework establishes upper bounds on the overall privacy guarantees by utilising two new technical notions.
arXiv Detail & Related papers (2024-03-19T17:54:49Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
Data-dependent privacy accounting frameworks such as per-instance differential privacy (pDP) and Fisher information loss (FIL) confer fine-grained privacy guarantees for individuals in a fixed training dataset.
We propose simple modifications of the Gaussian mechanism with bounded support, showing that they amplify privacy guarantees under data-dependent accounting.
arXiv Detail & Related papers (2024-03-07T21:22:07Z) - A Summary of Privacy-Preserving Data Publishing in the Local Setting [0.6749750044497732]
Statistical Disclosure Control aims to minimize the risk of exposing confidential information by de-identifying it.
We outline the current privacy-preserving techniques employed in microdata de-identification, delve into privacy measures tailored for various disclosure scenarios, and assess metrics for information loss and predictive performance.
arXiv Detail & Related papers (2023-12-19T04:23:23Z) - Adaptive Privacy Composition for Accuracy-first Mechanisms [55.53725113597539]
Noise reduction mechanisms produce increasingly accurate answers.
Analysts only pay the privacy cost of the least noisy or most accurate answer released.
There has yet to be any study on how ex-post private mechanisms compose.
We develop privacy filters that allow an analyst to adaptively switch between differentially private and ex-post private mechanisms.
arXiv Detail & Related papers (2023-06-24T00:33:34Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
We propose a new differential privacy paradigm called estimate-verify-release (EVR)
EVR paradigm first estimates the privacy parameter of a mechanism, then verifies whether it meets this guarantee, and finally releases the query output.
Our empirical evaluation shows the newly proposed EVR paradigm improves the utility-privacy tradeoff for privacy-preserving machine learning.
arXiv Detail & Related papers (2023-04-17T00:38:01Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - Efficient User-Centric Privacy-Friendly and Flexible Wearable Data Aggregation and Sharing [9.532148238768213]
Wearable devices can offer services to individuals and the public.
Wearable data collected by cloud providers may pose privacy risks.
We propose a novel, efficient, user-centric, privacy-friendly, and flexible data aggregation and sharing scheme, named SAMA.
arXiv Detail & Related papers (2022-03-01T13:51:52Z) - Bounding, Concentrating, and Truncating: Unifying Privacy Loss
Composition for Data Analytics [2.614355818010333]
We provide strong privacy loss bounds when an analyst may select pure DP, bounded range (e.g. exponential mechanisms) or concentrated DP mechanisms in any order.
We also provide optimal privacy loss bounds that apply when an analyst can select pure DP and bounded range mechanisms in a batch.
arXiv Detail & Related papers (2020-04-15T17:33:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.