Probing the topological phase transition in the Su-Schrieffer-Heeger model using Rydberg-atom synthetic dimensions
- URL: http://arxiv.org/abs/2404.18420v1
- Date: Mon, 29 Apr 2024 04:32:12 GMT
- Title: Probing the topological phase transition in the Su-Schrieffer-Heeger model using Rydberg-atom synthetic dimensions
- Authors: Yi Lu, Chuanyu Wang, Soumya K. Kanungo, F. Barry Dunning, Thomas C. Killian,
- Abstract summary: We show that even a system with as few as six levels can demonstrate the essential characteristics of the SSH Hamiltonian.
Results show that even a system with as few as six levels can demonstrate the essential characteristics of the SSH Hamiltonian.
- Score: 1.3079434566446835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We simulate the the Su-Schrieffer-Heeger (SSH) model using Rydberg-atom synthetic dimensions constructed, in a single atom, from a ladder of six neighboring $n\:^3S_1$ Rydberg states in which adjacent states are coupled with two-photon transitions using microwave fields. Alternating strong/weak tunneling rates, controlled by adjusting the microwave amplitudes, are varied to map out the topological phase transition as a function of the ratio of the tunneling rates. For each ratio, quench dynamics experiments, in which the system is initially prepared in one of the bulk Rydberg states and then subjected to the microwave fields, are performed to measure the population evolution of the system. From the dynamics measurements, we extract the mean chiral displacement and verify that its long-time average value converges towards the system winding number. The topological phase transition is also examined by probing the energy spectrum of the system in steady state and observing the disappearance of the zero-energy edge states. The results show that even a system with as few as six levels can demonstrate the essential characteristics of the SSH Hamiltonian.
Related papers
- Measurement induced phase transition in the central spin model: second Rényi entropy in dual space approach [0.0]
We conduct a numerical investigation of the dynamics of the central spin model in the presence of measurement processes.
To characterize the measurement-induced phase transition in this system, we employ a recently developed method based on second R'enyi entropy in dual space.
arXiv Detail & Related papers (2024-04-24T08:07:49Z) - Wave packet dynamics and long-range tunneling within the SSH model using
Rydberg-atom synthetic dimensions [0.0]
An atom is first excited to a Rydberg state that lies within the lattice then subject to the microwave dressing fields.
The measurements show the existence of long-lived symmetry-protected edge states and reveal the existence of direct long-distance tunneling between the edge states.
arXiv Detail & Related papers (2023-11-13T01:25:08Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Simulating spin measurement with a finite heat bath model for the
environment [2.8360662552057323]
Spin measurement is studied as a unitary time evolution of the spin coupled to an environment representing the meter and the apparatus.
We perform numerical simulations of projective measurements of the polarization, with the spins prepared initially in a neutral pure state.
The expected quantum randomness in the final state is manifest in our simulations as a tendency of the spin to approach either one of the two eigenstates of the measured spin operator.
arXiv Detail & Related papers (2022-04-24T02:01:46Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Rotation-driven transition into coexistent Josephson modes in an
atomtronic dc-SQUID [0.0]
We show that transitions to different arrays of coexistent regimes in the phase space can be attained by rotating a double-well system.
In particular, we show that within a determined rotation frequency interval, a hopping parameter, usually disregarded in nonrotating systems, turns out to rule the dynamics.
arXiv Detail & Related papers (2021-11-19T14:47:54Z) - Superradiant phase transition in complex networks [62.997667081978825]
We consider a superradiant phase transition problem for the Dicke-Ising model.
We examine regular, random, and scale-free network structures.
arXiv Detail & Related papers (2020-12-05T17:40:53Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.