Efficient Meta-Learning Enabled Lightweight Multiscale Few-Shot Object Detection in Remote Sensing Images
- URL: http://arxiv.org/abs/2404.18426v3
- Date: Mon, 17 Jun 2024 02:15:03 GMT
- Title: Efficient Meta-Learning Enabled Lightweight Multiscale Few-Shot Object Detection in Remote Sensing Images
- Authors: Wenbin Guan, Zijiu Yang, Xiaohong Wu, Liqiong Chen, Feng Huang, Xiaohai He, Honggang Chen,
- Abstract summary: YOLOv7 one-stage detector is subjected to a novel meta-learning training framework.
This transformation allows the detector to adeptly address FSOD tasks while capitalizing on its inherent advantage of lightweight.
To validate the effectiveness of our proposed detector, we conducted performance comparisons with current state-of-the-art detectors.
- Score: 15.12889076965307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Presently, the task of few-shot object detection (FSOD) in remote sensing images (RSIs) has become a focal point of attention. Numerous few-shot detectors, particularly those based on two-stage detectors, face challenges when dealing with the multiscale complexities inherent in RSIs. Moreover, these detectors present impractical characteristics in real-world applications, mainly due to their unwieldy model parameters when handling large amount of data. In contrast, we recognize the advantages of one-stage detectors, including high detection speed and a global receptive field. Consequently, we choose the YOLOv7 one-stage detector as a baseline and subject it to a novel meta-learning training framework. This transformation allows the detector to adeptly address FSOD tasks while capitalizing on its inherent advantage of lightweight. Additionally, we thoroughly investigate the samples generated by the meta-learning strategy and introduce a novel meta-sampling approach to retain samples produced by our designed meta-detection head. Coupled with our devised meta-cross loss, we deliberately utilize "negative samples" that are often overlooked to extract valuable knowledge from them. This approach serves to enhance detection accuracy and efficiently refine the overall meta-learning strategy. To validate the effectiveness of our proposed detector, we conducted performance comparisons with current state-of-the-art detectors using the DIOR and NWPU VHR-10.v2 datasets, yielding satisfactory results.
Related papers
- Generalization-Enhanced Few-Shot Object Detection in Remote Sensing [22.411751110592842]
Few-shot object detection (FSOD) targets object detection challenges in data-limited conditions.
We propose the Generalization-Enhanced Few-Shot Object Detection (GE-FSOD) model to improve the generalization capability in remote sensing tasks.
Our model introduces three key innovations: the Cross-Level Fusion Pyramid Attention Network (CFPAN), the Multi-Stage Refinement Region Proposal Network (MRRPN), and the Generalized Classification Loss (GCL)
arXiv Detail & Related papers (2025-01-05T08:12:25Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Optimizing Multispectral Object Detection: A Bag of Tricks and Comprehensive Benchmarks [49.84182981950623]
Multispectral object detection, utilizing RGB and TIR (thermal infrared) modalities, is widely recognized as a challenging task.
It requires not only the effective extraction of features from both modalities and robust fusion strategies, but also the ability to address issues such as spectral discrepancies.
We introduce an efficient and easily deployable multispectral object detection framework that can seamlessly optimize high-performing single-modality models.
arXiv Detail & Related papers (2024-11-27T12:18:39Z) - Boost UAV-based Ojbect Detection via Scale-Invariant Feature Disentanglement and Adversarial Learning [18.11107031800982]
We propose to improve single-stage inference accuracy through learning scale-invariant features.
Our approach can effectively improve model accuracy and achieve state-of-the-art (SoTA) performance on two datasets.
arXiv Detail & Related papers (2024-05-24T11:40:22Z) - Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
Small object detection remains unsatisfactory due to limited characteristics and high density and mutual overlap.
We propose methods enhancing sampling within an end-to-end framework.
Our model demonstrates a significant enhancement, achieving a 2.9% increase in average precision (AP) over the state-of-the-art (SOTA) on the VisDrone dataset.
arXiv Detail & Related papers (2024-05-17T04:37:44Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
We propose a two-stage Activation-to-Saliency (A2S) framework that effectively generates high-quality saliency cues.
No human annotations are involved in our framework during the whole training process.
Our framework reports significant performance compared with existing USOD methods.
arXiv Detail & Related papers (2021-12-07T11:54:06Z) - Robust and Accurate Object Detection via Adversarial Learning [111.36192453882195]
This work augments the fine-tuning stage for object detectors by exploring adversarial examples.
Our approach boosts the performance of state-of-the-art EfficientDets by +1.1 mAP on the object detection benchmark.
arXiv Detail & Related papers (2021-03-23T19:45:26Z) - SWIPENET: Object detection in noisy underwater images [41.35601054297707]
We propose a novel Sample-WeIghted hyPEr Network (SWIPENET), and a robust training paradigm named Curriculum Multi-Class Adaboost (CMA) to address these two problems.
The backbone of SWIPENET produces multiple high resolution and semantic-rich Hyper Feature Maps, which significantly improve small object detection.
Inspired by the human education process that drives the learning from easy to hard concepts, we here propose the CMA training paradigm that first trains a clean detector which is free from the influence of noisy data.
arXiv Detail & Related papers (2020-10-19T16:41:20Z) - Underwater object detection using Invert Multi-Class Adaboost with deep
learning [37.14538666012363]
We propose a novel neural network architecture, namely Sample-WeIghted hyPEr Network (SWIPENet), for small object detection.
We show that the proposed SWIPENet+IMA framework achieves better performance in detection accuracy against several state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-23T15:30:38Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - Progressive Object Transfer Detection [84.48927705173494]
We propose a novel Progressive Object Transfer Detection (POTD) framework.
First, POTD can leverage various object supervision of different domains effectively into a progressive detection procedure.
Second, POTD consists of two delicate transfer stages, i.e., Low-Shot Transfer Detection (LSTD), and Weakly-Supervised Transfer Detection (WSTD)
arXiv Detail & Related papers (2020-02-12T00:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.