論文の概要: Reduced-Rank Multi-objective Policy Learning and Optimization
- arxiv url: http://arxiv.org/abs/2404.18490v1
- Date: Mon, 29 Apr 2024 08:16:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 14:27:01.323265
- Title: Reduced-Rank Multi-objective Policy Learning and Optimization
- Title(参考訳): 縮小ランド型多目的政策学習と最適化
- Authors: Ezinne Nwankwo, Michael I. Jordan, Angela Zhou,
- Abstract要約: 実際には、因果研究者は先験を念頭において1つの結果を持っていない。
政府支援の社会福祉プログラムでは、政策立案者は貧困の多次元的性質を理解するために多くの成果を集めている。
本稿では、最適政策学習の文脈において、複数の結果に対するデータ駆動型次元性推論手法を提案する。
- 参考スコア(独自算出の注目度): 57.978477569678844
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evaluating the causal impacts of possible interventions is crucial for informing decision-making, especially towards improving access to opportunity. However, if causal effects are heterogeneous and predictable from covariates, personalized treatment decisions can improve individual outcomes and contribute to both efficiency and equity. In practice, however, causal researchers do not have a single outcome in mind a priori and often collect multiple outcomes of interest that are noisy estimates of the true target of interest. For example, in government-assisted social benefit programs, policymakers collect many outcomes to understand the multidimensional nature of poverty. The ultimate goal is to learn an optimal treatment policy that in some sense maximizes multiple outcomes simultaneously. To address such issues, we present a data-driven dimensionality-reduction methodology for multiple outcomes in the context of optimal policy learning with multiple objectives. We learn a low-dimensional representation of the true outcome from the observed outcomes using reduced rank regression. We develop a suite of estimates that use the model to denoise observed outcomes, including commonly-used index weightings. These methods improve estimation error in policy evaluation and optimization, including on a case study of real-world cash transfer and social intervention data. Reducing the variance of noisy social outcomes can improve the performance of algorithmic allocations.
- Abstract(参考訳): 潜在的介入の因果的影響を評価することは意思決定、特に機会へのアクセス改善に不可欠である。
しかし、因果効果が共変量から不均一で予測可能であれば、パーソナライズされた治療決定は個々の結果を改善し、効率と株式の両方に寄与することができる。
しかし、実際には、因果的研究者は先験を念頭において単一の結果を持たず、真の利害対象のノイズの多い推定値である複数の利害関係の結果を収集することが多い。
例えば、政府支援の社会福祉プログラムでは、政策立案者は貧困の多次元的性質を理解するために多くの成果を集めている。
最終的な目標は、ある意味で複数の結果を同時に最大化する最適な治療方針を学ぶことである。
このような問題に対処するために、複数の目的を持つ最適政策学習の文脈において、複数の結果に対するデータ駆動型次元性還元手法を提案する。
本研究は,低階調回帰を用いた観測結果から,実結果の低次元表現を学習する。
このモデルを用いて、一般に使用される指標重み付けを含む、観測結果の識別を行う一連の推定法を開発した。
これらの手法は,実社会におけるキャッシュ転送とソーシャル介入データのケーススタディを含む,政策評価と最適化における推定誤差を改善する。
ノイズの多い社会的結果のばらつきを減らすことで、アルゴリズムの割り当て性能を向上させることができる。
関連論文リスト
- Reconciling Heterogeneous Effects in Causal Inference [44.99833362998488]
本稿では、機械学習におけるモデル乗法にReconcileアルゴリズムを適用し、因果推論における異種効果を再現する。
本研究の結果は,医療,保険,住宅などの高額な事業において,公正な成果の確保に有意な意味を持っている。
論文 参考訳(メタデータ) (2024-06-05T18:43:46Z) - Metalearners for Ranking Treatment Effects [1.469168639465869]
政策の漸進的な利益曲線の下で、ランク付けの学習がいかにその領域を最大化できるかを示す。
政策の漸進的な利益曲線の下で、ランク付けの学習がいかにその領域を最大化できるかを示す。
論文 参考訳(メタデータ) (2024-05-03T15:31:18Z) - Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data [102.16105233826917]
好みラベルからの学習は、微調整された大きな言語モデルにおいて重要な役割を果たす。
好みの微調整には、教師付き学習、オンライン強化学習(RL)、コントラスト学習など、いくつかの異なるアプローチがある。
論文 参考訳(メタデータ) (2024-04-22T17:20:18Z) - Individualized Policy Evaluation and Learning under Clustered Network
Interference [4.560284382063488]
クラスタ化されたネットワーク干渉下での最適個別化処理ルールの評価と学習の問題点を考察する。
ITRの実証性能を評価するための推定器を提案する。
学習ITRに対する有限サンプル残差を導出し、効率的な評価推定器の使用により学習ポリシーの性能が向上することを示す。
論文 参考訳(メタデータ) (2023-11-04T17:58:24Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
下流推論に重点を置く因果発見手法の評価において,顕著なギャップが存在する。
我々は,GFlowNetsに基づく新たな手法を含む,確立された7つの基本因果探索手法を評価する。
研究の結果,研究対象のアルゴリズムのいくつかは,多種多様なATEモードを効果的に捉えることができることがわかった。
論文 参考訳(メタデータ) (2023-07-11T02:58:10Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
線形関数近似を用いた強化学習における非政治的評価問題について検討する。
本稿では,値関数の分散を推定し,フィルタQ-Iterationにおけるベルマン残差を再重み付けするアルゴリズムVA-OPEを提案する。
論文 参考訳(メタデータ) (2021-06-22T17:58:46Z) - Stochastic Intervention for Causal Inference via Reinforcement Learning [7.015556609676951]
因果推論の中心は介入戦略の処理効果推定である。
既存の方法はほとんどが決定論的治療に限られており、異なる治療下での結果を比較する。
介入に対する治療効果を推定するための新しい効果的な枠組みを提案する。
論文 参考訳(メタデータ) (2021-05-28T00:11:22Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z) - Learning Overlapping Representations for the Estimation of
Individualized Treatment Effects [97.42686600929211]
観測データから代替案の可能性を推定することは難しい問題である。
入力のドメイン不変表現を学習するアルゴリズムは、しばしば不適切であることを示す。
我々は,様々なベンチマークデータセットの最先端性を大幅に向上させる,ディープカーネル回帰アルゴリズムと後続正規化フレームワークを開発した。
論文 参考訳(メタデータ) (2020-01-14T12:56:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。