Bridging Data Barriers among Participants: Assessing the Potential of Geoenergy through Federated Learning
- URL: http://arxiv.org/abs/2404.18527v1
- Date: Mon, 29 Apr 2024 09:12:31 GMT
- Title: Bridging Data Barriers among Participants: Assessing the Potential of Geoenergy through Federated Learning
- Authors: Weike Peng, Jiaxin Gao, Yuntian Chen, Shengwei Wang,
- Abstract summary: This study introduces a novel federated learning (FL) framework based on XGBoost models.
FL models demonstrate superior accuracy and generalization capabilities compared to separate models.
This study opens new avenues for assessing unconventional reservoirs through collaborative and privacy-preserving FL techniques.
- Score: 2.8498944632323755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning algorithms emerge as a promising approach in energy fields, but its practical is hindered by data barriers, stemming from high collection costs and privacy concerns. This study introduces a novel federated learning (FL) framework based on XGBoost models, enabling safe collaborative modeling with accessible yet concealed data from multiple parties. Hyperparameter tuning of the models is achieved through Bayesian Optimization. To ascertain the merits of the proposed FL-XGBoost method, a comparative analysis is conducted between separate and centralized models to address a classical binary classification problem in geoenergy sector. The results reveal that the proposed FL framework strikes an optimal balance between privacy and accuracy. FL models demonstrate superior accuracy and generalization capabilities compared to separate models, particularly for participants with limited data or low correlation features and offers significant privacy benefits compared to centralized model. The aggregated optimization approach within the FL agreement proves effective in tuning hyperparameters. This study opens new avenues for assessing unconventional reservoirs through collaborative and privacy-preserving FL techniques.
Related papers
- CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated learning (FL) has emerged as a promising framework for distributed machine learning.
We introduce CorBin-FL, a privacy mechanism that uses correlated binary quantization to achieve differential privacy.
We also propose AugCorBin-FL, an extension that, in addition to PLDP, user-level and sample-level central differential privacy guarantees.
arXiv Detail & Related papers (2024-09-20T00:23:44Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - Contrastive encoder pre-training-based clustered federated learning for
heterogeneous data [17.580390632874046]
Federated learning (FL) enables distributed clients to collaboratively train a global model while preserving their data privacy.
We propose contrastive pre-training-based clustered federated learning (CP-CFL) to improve the model convergence and overall performance of FL systems.
arXiv Detail & Related papers (2023-11-28T05:44:26Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
Federated learning (FL) has been recognized as a rapidly growing area, where the model is trained over clients under the FL orchestration (PS)
In this paper, we propose a novel primal sparification algorithm for and guarantee non-smooth FL problems.
Its unique insightful properties and its analyses are also presented.
arXiv Detail & Related papers (2023-10-30T14:15:47Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
This study explores the problem of Federated Learning (FL) by utilizing the Deep Equilibrium (DEQ) models instead of conventional deep learning networks.
We claim that incorporating DEQ models into the federated learning framework naturally addresses several open problems in FL.
To the best of our knowledge, this study is the first to establish a connection between DEQ models and federated learning.
arXiv Detail & Related papers (2023-05-29T22:51:40Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Knowledge Distillation for Federated Learning: a Practical Guide [8.2791533759453]
Federated Learning (FL) enables the training of Deep Learning models without centrally collecting possibly sensitive raw data.
The most used algorithms for FL are parameter-averaging based schemes (e.g., Federated Averaging) that, however, have well known limits.
We provide a review of KD-based algorithms tailored for specific FL issues.
arXiv Detail & Related papers (2022-11-09T08:31:23Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Federated Ensemble Model-based Reinforcement Learning in Edge Computing [21.840086997141498]
Federated learning (FL) is a privacy-preserving distributed machine learning paradigm.
We propose a novel FRL algorithm that effectively incorporates model-based RL and ensemble knowledge distillation into FL for the first time.
Specifically, we utilise FL and knowledge distillation to create an ensemble of dynamics models for clients, and then train the policy by solely using the ensemble model without interacting with the environment.
arXiv Detail & Related papers (2021-09-12T16:19:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.