Machine Learning for Quantum Computing Specialists
- URL: http://arxiv.org/abs/2404.18555v1
- Date: Mon, 29 Apr 2024 09:54:06 GMT
- Title: Machine Learning for Quantum Computing Specialists
- Authors: Daniel Goldsmith, M M Hassan Mahmud,
- Abstract summary: Quantum machine learning (QML) is a promising early use case for quantum computing.
There has been progress in the last five years from theoretical studies and numerical simulations to proof of concepts.
Use cases demonstrated on contemporary quantum devices include classifying medical images and items from the Iris dataset, classifying and generating handwritten images, toxicity screening, and learning a probability distribution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Quantum machine learning (QML) is a promising early use case for quantum computing. There has been progress in the last five years from theoretical studies and numerical simulations to proof of concepts. Use cases demonstrated on contemporary quantum devices include classifying medical images and items from the Iris dataset, classifying and generating handwritten images, toxicity screening, and learning a probability distribution. Potential benefits of QML include faster training and identification of feature maps not found classically. Although, these examples lack the scale for commercial exploitation, and it may be several years before QML algorithms replace the classical solutions, QML is an exciting area. This article is written for those who already have a sound knowledge of quantum computing and now wish to gain a basic overview of the terminology and some applications of classical machine learning ready to study quantum machine learning. The reader will already understand the relevant relevant linear algebra, including Hilbert spaces, a vector space with an inner product.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Hybrid Quantum-Classical Machine Learning with String Diagrams [49.1574468325115]
This paper develops a formal framework for describing hybrid algorithms in terms of string diagrams.
A notable feature of our string diagrams is the use of functor boxes, which correspond to a quantum-classical interfaces.
arXiv Detail & Related papers (2024-07-04T06:37:16Z) - Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - Quantum Text Classifier -- A Synchronistic Approach Towards Classical
and Quantum Machine Learning [0.0]
Methods and algorithms are being developed to demonstrate the feasibility of running machine learning pipelines in quantum computing.
There is a lot of ongoing work on general QML (Quantum Machine Learning) algorithms and applications.
This paper introduces quantum machine learning w.r.t text classification to readers of machine learning.
arXiv Detail & Related papers (2023-05-22T07:27:37Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Towards AutoQML: A Cloud-Based Automated Circuit Architecture Search
Framework [0.0]
We take the first steps towards Automated Quantum Machine Learning (AutoQML)
We propose a concrete description of the problem, and then develop a classical-quantum hybrid cloud architecture.
As an application use-case, we train a quantum Geneversarative Adrial neural Network (qGAN) to generate energy prices that follow a known historic data distribution.
arXiv Detail & Related papers (2022-02-16T12:37:10Z) - Systematic Literature Review: Quantum Machine Learning and its
applications [0.0]
This manuscript aims to present a Systematic Literature Review of the papers published between 2017 and 2023.
This study identified 94 articles that used quantum machine learning techniques and algorithms.
An improvement in the quantum hardware is required since the existing quantum computers lack enough quality, speed, and scale to allow quantum computing to achieve its full potential.
arXiv Detail & Related papers (2022-01-11T17:36:34Z) - Classification with Quantum Machine Learning: A Survey [17.55390082094971]
We combine classical machine learning (ML) with Quantum Information Processing (QIP) to build a new field in the quantum world is called Quantum Machine Learning (QML)
This paper presents and summarizes a comprehensive survey of the state-of-the-art advances in Quantum Machine Learning (QML)
arXiv Detail & Related papers (2020-06-22T14:05:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.