Quantum Text Classifier -- A Synchronistic Approach Towards Classical
and Quantum Machine Learning
- URL: http://arxiv.org/abs/2305.12783v1
- Date: Mon, 22 May 2023 07:27:37 GMT
- Title: Quantum Text Classifier -- A Synchronistic Approach Towards Classical
and Quantum Machine Learning
- Authors: Dr. Prabhat Santi, Kamakhya Mishra, Sibabrata Mohanty
- Abstract summary: Methods and algorithms are being developed to demonstrate the feasibility of running machine learning pipelines in quantum computing.
There is a lot of ongoing work on general QML (Quantum Machine Learning) algorithms and applications.
This paper introduces quantum machine learning w.r.t text classification to readers of machine learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although it will be a while before a practical quantum computer is available,
there is no need to hold off. Methods and algorithms are being developed to
demonstrate the feasibility of running machine learning (ML) pipelines in QC
(Quantum Computing). There is a lot of ongoing work on general QML (Quantum
Machine Learning) algorithms and applications. However, a working model or
pipeline for a text classifier using quantum algorithms isn't available. This
paper introduces quantum machine learning w.r.t text classification to readers
of classical machine learning. It begins with a brief description of quantum
computing and basic quantum algorithms, with an emphasis on building text
classification pipelines. A new approach is introduced to implement an
end-to-end text classification framework (Quantum Text Classifier - QTC), where
pre- and post-processing of data is performed on a classical computer, and text
classification is performed using the QML algorithm. This paper also presents
an implementation of the QTC framework and available quantum ML algorithms for
text classification using the IBM Qiskit library and IBM backends.
Related papers
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - Hybrid Quantum-Classical Machine Learning with String Diagrams [49.1574468325115]
This paper develops a formal framework for describing hybrid algorithms in terms of string diagrams.
A notable feature of our string diagrams is the use of functor boxes, which correspond to a quantum-classical interfaces.
arXiv Detail & Related papers (2024-07-04T06:37:16Z) - Machine Learning for Quantum Computing Specialists [0.0]
Quantum machine learning (QML) is a promising early use case for quantum computing.
There has been progress in the last five years from theoretical studies and numerical simulations to proof of concepts.
Use cases demonstrated on contemporary quantum devices include classifying medical images and items from the Iris dataset, classifying and generating handwritten images, toxicity screening, and learning a probability distribution.
arXiv Detail & Related papers (2024-04-29T09:54:06Z) - Quantum-Assisted Simulation: A Framework for Developing Machine Learning Models in Quantum Computing [0.0]
We investigate the history of quantum computing, examine existing QML algorithms, and present a simplified procedure for setting up simulations of QML algorithms.
We conduct simulations on a dataset using both traditional machine learning and quantum machine learning approaches.
arXiv Detail & Related papers (2023-11-17T07:33:42Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Quantum Machine Learning for Software Supply Chain Attacks: How Far Can
We Go? [5.655023007686363]
This paper analyzes speed up performance of QC when applied to machine learning algorithms, known as Quantum Machine Learning (QML)
Due to limitations of real quantum computers, the QML methods were implemented on open-source quantum simulators such as Qiskit and IBM Quantum.
Interestingly, the experimental results differ to the speed up promises of QC by demonstrating higher computational time and lower accuracy in comparison to the classical approaches for SSC attacks.
arXiv Detail & Related papers (2022-04-04T21:16:06Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum Machine Learning For Classical Data [0.0]
We study the intersection of quantum computing and supervised machine learning algorithms.
In particular, we investigate what extent quantum computers can be used to accelerate supervised machine learning algorithms.
arXiv Detail & Related papers (2021-05-08T12:11:44Z) - Classification with Quantum Machine Learning: A Survey [17.55390082094971]
We combine classical machine learning (ML) with Quantum Information Processing (QIP) to build a new field in the quantum world is called Quantum Machine Learning (QML)
This paper presents and summarizes a comprehensive survey of the state-of-the-art advances in Quantum Machine Learning (QML)
arXiv Detail & Related papers (2020-06-22T14:05:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.