Two-dimensional correlation propagation dynamics with a cluster discrete phase-space method
- URL: http://arxiv.org/abs/2404.18594v2
- Date: Wed, 8 May 2024 10:16:14 GMT
- Title: Two-dimensional correlation propagation dynamics with a cluster discrete phase-space method
- Authors: Kazuma Nagao, Seiji Yunoki,
- Abstract summary: Nonequilibrium dynamics of highly-controlled quantum systems is a challenging issue in statistical physics.
We develop a discrete phase-space approach for general SU($N$) spin systems that capture non-trivial quantum correlations inside each cluster.
We demonstrate that the cluster discrete truncated Wigner approximation can reproduce key results in a recent experiment on the correlation propagation dynamics in a two dimensional Bose-Hubbard system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonequilibrium dynamics of highly-controlled quantum systems is a challenging issue in statistical physics and quantum many-body physics, relevant to recent experimental developments of analog and digital quantum simulations. In this work, we develop a discrete phase-space approach for general SU($N$) spin systems that utilizes cluster mean field equations, which capture non-trivial quantum correlations inside each cluster, beyond the capability of the standard discrete truncated Wigner approximation for individual classical spins. Our formalism, based on a cluster phase-point operator, makes it possible to realize scalable numerical samplings of cluster phase-space variables, where the total number of noise variables for a direct product state is independent of the choice of the separation into finite regions of clusters. We numerically demonstrate that the cluster discrete truncated Wigner approximation (C-dTWA) method can reproduce key results in a recent experiment on the correlation propagation dynamics in a two dimensional Bose-Hubbard system. We also compare the results of C-dTWA for clusters of $2\times 2$ sites with those of a two-dimensional tensor network method and discuss that both approaches agree very well in a short time region, where the energy is well conserved in the tensor network simulations. Since we formulate the C-dTWA method in a general form, it can be potentially applied to various dynamical problems in isolated and open quantum systems even in higher dimensions.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Real-time Dynamics of the Schwinger Model as an Open Quantum System with Neural Density Operators [1.0713888959520208]
This work develops machine learning algorithms to overcome the difficulty of approximating exact quantum states with neural network parametrisations.
As a proof of principle demonstration in a QCD-like theory, the approach is applied to solve the Lindblad master equation in the 1+1d lattice Schwinger Model as an open quantum system.
arXiv Detail & Related papers (2024-02-09T18:36:17Z) - Semiclassical descriptions of dissipative dynamics of strongly interacting Bose gases in optical lattices [0.0]
We develop methods for describing real-time dynamics of dissipative Bose-Hubbard systems in a strongly interacting regime.
We numerically demonstrate that the discrete TWA approach is able to qualitatively capture the continuous quantum Zeno effect on dynamics.
arXiv Detail & Related papers (2023-07-30T08:39:06Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Open quantum dynamics of strongly coupled oscillators with
multi-configuration time-dependent Hartree propagation and Markovian quantum
jumps [0.0]
We implement a quantum state trajectory scheme for solving Lindblad quantum master equations.
We show the potential for solving the dissipative dynamics of finite size arrays of strongly interacting quantized oscillators with high excitation densities.
arXiv Detail & Related papers (2022-08-02T03:01:14Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Tensor-network study of correlation-spreading dynamics in the
two-dimensional Bose-Hubbard model [0.0]
We demonstrate that a tensor-network method running on classical computers is useful for this purpose.
We specifically analyze real-time dynamics of the two-dimensional Bose-Hubbard model after a sudden quench.
By estimating the phase and group velocities from the single-particle and density-density correlation functions, we predict how these velocities vary in the moderate interaction region.
arXiv Detail & Related papers (2021-08-25T05:37:16Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Continuous and time-discrete non-Markovian system-reservoir
interactions: Dissipative coherent quantum feedback in Liouville space [62.997667081978825]
We investigate a quantum system simultaneously exposed to two structured reservoirs.
We employ a numerically exact quasi-2D tensor network combining both diagonal and off-diagonal system-reservoir interactions with a twofold memory for continuous and discrete retardation effects.
As a possible example, we study the non-Markovian interplay between discrete photonic feedback and structured acoustic phononovian modes, resulting in emerging inter-reservoir correlations and long-living population trapping within an initially-excited two-level system.
arXiv Detail & Related papers (2020-11-10T12:38:35Z) - Sub-system quantum dynamics using coupled cluster downfolding techniques [0.0]
We discuss extending the sub-system embedding sub-algebra coupled cluster (SESCC) formalism and the double unitary coupled cluster (DUCC) Ansatz to the time domain.
Using these formalisms, it is possible to calculate the energy of the entire system as an eigenvalue of downfolded/effective Hamiltonian in the active space.
It can also be shown that downfolded Hamiltonians integrate out Fermionic degrees of freedom that do not correspond to the physics encapsulated by the active space.
arXiv Detail & Related papers (2020-03-21T03:11:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.