Self-supervised learning for classifying paranasal anomalies in the maxillary sinus
- URL: http://arxiv.org/abs/2404.18599v1
- Date: Mon, 29 Apr 2024 11:14:11 GMT
- Title: Self-supervised learning for classifying paranasal anomalies in the maxillary sinus
- Authors: Debayan Bhattacharya, Finn Behrendt, Benjamin Tobias Becker, Lennart Maack, Dirk Beyersdorff, Elina Petersen, Marvin Petersen, Bastian Cheng, Dennis Eggert, Christian Betz, Anna Sophie Hoffmann, Alexander Schlaefer,
- Abstract summary: Self-supervised learning can be used to learn representations from unlabelled data.
There are no SSL methods designed for the downstream task of classifying paranasal anomalies in the maxillary sinus.
Our approach uses a 3D Convolutional Autoencoder trained in an unsupervised anomaly detection framework.
- Score: 31.45131665942058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: Paranasal anomalies, frequently identified in routine radiological screenings, exhibit diverse morphological characteristics. Due to the diversity of anomalies, supervised learning methods require large labelled dataset exhibiting diverse anomaly morphology. Self-supervised learning (SSL) can be used to learn representations from unlabelled data. However, there are no SSL methods designed for the downstream task of classifying paranasal anomalies in the maxillary sinus (MS). Methods: Our approach uses a 3D Convolutional Autoencoder (CAE) trained in an unsupervised anomaly detection (UAD) framework. Initially, we train the 3D CAE to reduce reconstruction errors when reconstructing normal maxillary sinus (MS) image. Then, this CAE is applied to an unlabelled dataset to generate coarse anomaly locations by creating residual MS images. Following this, a 3D Convolutional Neural Network (CNN) reconstructs these residual images, which forms our SSL task. Lastly, we fine-tune the encoder part of the 3D CNN on a labelled dataset of normal and anomalous MS images. Results: The proposed SSL technique exhibits superior performance compared to existing generic self-supervised methods, especially in scenarios with limited annotated data. When trained on just 10% of the annotated dataset, our method achieves an Area Under the Precision-Recall Curve (AUPRC) of 0.79 for the downstream classification task. This performance surpasses other methods, with BYOL attaining an AUPRC of 0.75, SimSiam at 0.74, SimCLR at 0.73 and Masked Autoencoding using SparK at 0.75. Conclusion: A self-supervised learning approach that inherently focuses on localizing paranasal anomalies proves to be advantageous, particularly when the subsequent task involves differentiating normal from anomalous maxillary sinuses. Access our code at https://github.com/mtec-tuhh/self-supervised-paranasal-anomaly
Related papers
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - Multiple Instance Ensembling For Paranasal Anomaly Classification In The
Maxillary Sinus [46.1292414445895]
Paranasal anomalies can present with a wide range of morphological features.
Current approaches to paranasal anomaly classification are constrained to identifying a single anomaly at a time.
We investigate the feasibility of using a 3D convolutional neural network (CNN) to classify healthy maxillary (MS) and MS with polyps or cysts.
arXiv Detail & Related papers (2023-03-31T09:23:27Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - Supervised Contrastive Learning to Classify Paranasal Anomalies in the
Maxillary Sinus [43.850343556811275]
Using deep learning techniques, anomalies in the paranasal sinus system can be detected automatically in MRI images.
Existing deep learning methods in paranasal anomaly classification have been used to diagnose at most one anomaly.
We propose a novel learning paradigm that combines contrastive loss and cross-entropy loss.
arXiv Detail & Related papers (2022-09-05T12:31:28Z) - Localized Perturbations For Weakly-Supervised Segmentation of Glioma
Brain Tumours [0.5801621787540266]
This work proposes the use of localized perturbations as a weakly-supervised solution to extract segmentation masks of brain tumours from a pretrained 3D classification model.
We also propose a novel optimal perturbation method that exploits 3D superpixels to find the most relevant area for a given classification using a U-net architecture.
arXiv Detail & Related papers (2021-11-29T21:01:20Z) - A Comparison of Supervised and Unsupervised Deep Learning Methods for
Anomaly Detection in Images [5.769720012976111]
Anomaly detection in images plays a significant role for many applications across all industries, such as disease diagnosis in healthcare or quality assurance in manufacturing.
In this paper we investigate different methods of deep learning, including supervised and unsupervised learning, for anomaly detection applied to a quality assurance use case.
arXiv Detail & Related papers (2021-07-20T00:14:12Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Double-Adversarial Activation Anomaly Detection: Adversarial
Autoencoders are Anomaly Generators [0.0]
Anomaly detection is a challenging task for machine learning algorithms due to the inherent class imbalance.
Inspired by generative models and the analysis of the hidden activations of neural networks, we introduce a novel unsupervised anomaly detection method called DA3D.
arXiv Detail & Related papers (2021-01-12T18:07:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.