Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution
- URL: http://arxiv.org/abs/2311.11235v2
- Date: Mon, 27 Nov 2023 01:15:06 GMT
- Title: Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution
- Authors: Yuting Sun, Guansong Pang, Guanhua Ye, Tong Chen, Xia Hu, Hongzhi Yin
- Abstract summary: Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
- Score: 89.16750999704969
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ongoing challenges in time series anomaly detection (TSAD), notably the
scarcity of anomaly labels and the variability in anomaly lengths and shapes,
have led to the need for a more efficient solution. As limited anomaly labels
hinder traditional supervised models in TSAD, various SOTA deep learning
techniques, such as self-supervised learning, have been introduced to tackle
this issue. However, they encounter difficulties handling variations in anomaly
lengths and shapes, limiting their adaptability to diverse anomalies.
Additionally, many benchmark datasets suffer from the problem of having
explicit anomalies that even random functions can detect. This problem is
exacerbated by ill-posed evaluation metrics, known as point adjustment (PA),
which can result in inflated model performance. In this context, we propose a
novel self-supervised learning based Tri-domain Anomaly Detector (TriAD), which
addresses these challenges by modeling features across three data domains -
temporal, frequency, and residual domains - without relying on anomaly labels.
Unlike traditional contrastive learning methods, TriAD employs both
inter-domain and intra-domain contrastive loss to learn common attributes among
normal data and differentiate them from anomalies. Additionally, our approach
can detect anomalies of varying lengths by integrating with a discord discovery
algorithm. It is worth noting that this study is the first to reevaluate the
deep learning potential in TSAD, utilizing both rigorously designed datasets
(i.e., UCR Archive) and evaluation metrics (i.e., PA%K and affiliation).
Through experimental results on the UCR dataset, TriAD achieves an impressive
three-fold increase in PA%K based F1 scores over SOTA deep learning models, and
50% increase of accuracy as compared to SOTA discord discovery algorithms.
Related papers
- ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - DACAD: Domain Adaptation Contrastive Learning for Anomaly Detection in Multivariate Time Series [25.434379659643707]
In time series anomaly detection, the scarcity of labeled data poses a challenge to the development of accurate models.
We propose a novel Domain Contrastive learning model for Anomaly Detection in time series (DACAD)
Our model employs supervised contrastive loss for the source domain and self-supervised contrastive triplet loss for the target domain.
arXiv Detail & Related papers (2024-04-17T11:20:14Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - An Iterative Method for Unsupervised Robust Anomaly Detection Under Data
Contamination [24.74938110451834]
Most deep anomaly detection models are based on learning normality from datasets.
In practice, the normality assumption is often violated due to the nature of real data distributions.
We propose a learning framework to reduce this gap and achieve better normality representation.
arXiv Detail & Related papers (2023-09-18T02:36:19Z) - Contaminated Multivariate Time-Series Anomaly Detection with Spatio-Temporal Graph Conditional Diffusion Models [8.010966370223985]
This paper presents a novel and practical end-to-end unsupervised TSAD when the training data is contaminated with anomalies.
The introduced approach, called TSAD-C, is devoid of access to abnormality labels during the training phase.
Our experiments conducted on four reliable and diverse datasets conclusively demonstrate that TSAD-C surpasses existing methodologies.
arXiv Detail & Related papers (2023-08-24T05:10:18Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - DeepFIB: Self-Imputation for Time Series Anomaly Detection [5.4921159672644775]
Time series anomaly detection (AD) plays an essential role in various applications, e.g., fraud detection in finance and healthcare monitoring.
We propose a novel self-supervised learning technique for AD in time series, namely emphDeepFIB.
We show that DeepFIB outperforms state-of-the-art methods by a large margin, achieving up to $65.2%$ relative improvement in F1-score.
arXiv Detail & Related papers (2021-12-12T14:28:06Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.