CoSense3D: an Agent-based Efficient Learning Framework for Collective Perception
- URL: http://arxiv.org/abs/2404.18617v1
- Date: Mon, 29 Apr 2024 11:40:27 GMT
- Title: CoSense3D: an Agent-based Efficient Learning Framework for Collective Perception
- Authors: Yunshuang Yuan, Monika Sester,
- Abstract summary: We propose an agent-based training framework that handles the deep learning modules and agent data separately to have a cleaner data flow structure.
This framework not only provides an API for prototyping the data processing pipeline and defining the gradient calculation for each agent, but also provides the user interface for interactive training, testing and data visualization.
- Score: 0.552480439325792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collective Perception has attracted significant attention in recent years due to its advantage for mitigating occlusion and expanding the field-of-view, thereby enhancing reliability, efficiency, and, most crucially, decision-making safety. However, developing collective perception models is highly resource demanding due to extensive requirements of processing input data for many agents, usually dozens of images and point clouds for a single frame. This not only slows down the model development process for collective perception but also impedes the utilization of larger models. In this paper, we propose an agent-based training framework that handles the deep learning modules and agent data separately to have a cleaner data flow structure. This framework not only provides an API for flexibly prototyping the data processing pipeline and defining the gradient calculation for each agent, but also provides the user interface for interactive training, testing and data visualization. Training experiment results of four collective object detection models on the prominent collective perception benchmark OPV2V show that the agent-based training can significantly reduce the GPU memory consumption and training time while retaining inference performance. The framework and model implementations are available at \url{https://github.com/YuanYunshuang/CoSense3D}
Related papers
- An Integrated Data Processing Framework for Pretraining Foundation Models [57.47845148721817]
Researchers and practitioners often have to manually curate datasets from difference sources.
We propose a data processing framework that integrates a Processing Module and an Analyzing Module.
The proposed framework is easy to use and highly flexible.
arXiv Detail & Related papers (2024-02-26T07:22:51Z) - A Simple and Efficient Baseline for Data Attribution on Images [107.12337511216228]
Current state-of-the-art approaches require a large ensemble of as many as 300,000 models to accurately attribute model predictions.
In this work, we focus on a minimalist baseline, utilizing the feature space of a backbone pretrained via self-supervised learning to perform data attribution.
Our method is model-agnostic and scales easily to large datasets.
arXiv Detail & Related papers (2023-11-03T17:29:46Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Scanflow: A multi-graph framework for Machine Learning workflow
management, supervision, and debugging [0.0]
We propose a novel containerized directed graph framework to support end-to-end Machine Learning workflow management.
The framework allows defining and deploying ML in containers, tracking their metadata, checking their behavior in production, and improving the models by using both learned and human-provided knowledge.
arXiv Detail & Related papers (2021-11-04T17:01:12Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - It's the Best Only When It Fits You Most: Finding Related Models for
Serving Based on Dynamic Locality Sensitive Hashing [1.581913948762905]
Preparation of training data is often a bottleneck in the lifecycle of deploying a deep learning model for production or research.
This paper proposes an end-to-end process of searching related models for serving based on the similarity of the target dataset and the training datasets of the available models.
arXiv Detail & Related papers (2020-10-13T22:52:13Z) - GRAFFL: Gradient-free Federated Learning of a Bayesian Generative Model [8.87104231451079]
This paper presents the first gradient-free federated learning framework called GRAFFL.
It uses implicit information derived from each participating institution to learn posterior distributions of parameters.
We propose the GRAFFL-based Bayesian mixture model to serve as a proof-of-concept of the framework.
arXiv Detail & Related papers (2020-08-29T07:19:44Z) - Learning Fast and Robust Target Models for Video Object Segmentation [83.3382606349118]
Video object segmentation (VOS) is a highly challenging problem since the initial mask, defining the target object, is only given at test-time.
Most previous approaches fine-tune segmentation networks on the first frame, resulting in impractical frame-rates and risk of overfitting.
We propose a novel VOS architecture consisting of two network components.
arXiv Detail & Related papers (2020-02-27T21:58:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.