Self-Avatar Animation in Virtual Reality: Impact of Motion Signals Artifacts on the Full-Body Pose Reconstruction
- URL: http://arxiv.org/abs/2404.18628v1
- Date: Mon, 29 Apr 2024 12:02:06 GMT
- Title: Self-Avatar Animation in Virtual Reality: Impact of Motion Signals Artifacts on the Full-Body Pose Reconstruction
- Authors: Antoine Maiorca, Seyed Abolfazl Ghasemzadeh, Thierry Ravet, François Cresson, Thierry Dutoit, Christophe De Vleeschouwer,
- Abstract summary: We aim to measure the impact on the reconstruction of the articulated self-avatar's full-body pose.
We analyze the motion reconstruction errors using ground truth and 3D Cartesian coordinates estimated from textitYOLOv8 pose estimation.
- Score: 13.422686350235615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Virtual Reality (VR) applications have revolutionized user experiences by immersing individuals in interactive 3D environments. These environments find applications in numerous fields, including healthcare, education, or architecture. A significant aspect of VR is the inclusion of self-avatars, representing users within the virtual world, which enhances interaction and embodiment. However, generating lifelike full-body self-avatar animations remains challenging, particularly in consumer-grade VR systems, where lower-body tracking is often absent. One method to tackle this problem is by providing an external source of motion information that includes lower body information such as full Cartesian positions estimated from RGB(D) cameras. Nevertheless, the limitations of these systems are multiples: the desynchronization between the two motion sources and occlusions are examples of significant issues that hinder the implementations of such systems. In this paper, we aim to measure the impact on the reconstruction of the articulated self-avatar's full-body pose of (1) the latency between the VR motion features and estimated positions, (2) the data acquisition rate, (3) occlusions, and (4) the inaccuracy of the position estimation algorithm. In addition, we analyze the motion reconstruction errors using ground truth and 3D Cartesian coordinates estimated from \textit{YOLOv8} pose estimation. These analyzes show that the studied methods are significantly sensitive to any degradation tested, especially regarding the velocity reconstruction error.
Related papers
- Occlusion-Aware 3D Motion Interpretation for Abnormal Behavior Detection [10.782354892545651]
We present OAD2D, which discriminates against motion abnormalities based on reconstructing 3D coordinates of mesh vertices and human joints from monocular videos.
We reformulate the abnormal posture estimation by coupling it with Motion to Text (M2T) model in which, the VQVAE is employed to quantize motion features.
Our approach demonstrates the robustness of abnormal behavior detection against severe and self-occlusions, as it reconstructs human motion trajectories in global coordinates.
arXiv Detail & Related papers (2024-07-23T18:41:16Z) - EgoGaussian: Dynamic Scene Understanding from Egocentric Video with 3D Gaussian Splatting [95.44545809256473]
EgoGaussian is a method capable of simultaneously reconstructing 3D scenes and dynamically tracking 3D object motion from RGB egocentric input alone.
We show significant improvements in terms of both dynamic object and background reconstruction quality compared to the state-of-the-art.
arXiv Detail & Related papers (2024-06-28T10:39:36Z) - SparsePoser: Real-time Full-body Motion Reconstruction from Sparse Data [1.494051815405093]
We introduce SparsePoser, a novel deep learning-based solution for reconstructing a full-body pose from sparse data.
Our system incorporates a convolutional-based autoencoder that synthesizes high-quality continuous human poses.
We show that our method outperforms state-of-the-art techniques using IMU sensors or 6-DoF tracking devices.
arXiv Detail & Related papers (2023-11-03T18:48:01Z) - MOVIN: Real-time Motion Capture using a Single LiDAR [7.3228874258537875]
We present MOVIN, the data-driven generative method for real-time motion capture with global tracking.
Our framework accurately predicts the performer's 3D global information and local joint details.
We implement a real-time application to showcase our method in real-world scenarios.
arXiv Detail & Related papers (2023-09-17T16:04:15Z) - GraMMaR: Ground-aware Motion Model for 3D Human Motion Reconstruction [61.833152949826946]
We propose a novel Ground-aware Motion Model for 3D Human Motion Reconstruction, named GraMMaR.
GraMMaR learns the distribution of transitions in both pose and interaction between every joint and ground plane at each time step of a motion sequence.
It is trained to explicitly promote consistency between the motion and distance change towards the ground.
arXiv Detail & Related papers (2023-06-29T07:22:20Z) - Progressive Multi-view Human Mesh Recovery with Self-Supervision [68.60019434498703]
Existing solutions typically suffer from poor generalization performance to new settings.
We propose a novel simulation-based training pipeline for multi-view human mesh recovery.
arXiv Detail & Related papers (2022-12-10T06:28:29Z) - HSPACE: Synthetic Parametric Humans Animated in Complex Environments [67.8628917474705]
We build a large-scale photo-realistic dataset, Human-SPACE, of animated humans placed in complex indoor and outdoor environments.
We combine a hundred diverse individuals of varying ages, gender, proportions, and ethnicity, with hundreds of motions and scenes, in order to generate an initial dataset of over 1 million frames.
Assets are generated automatically, at scale, and are compatible with existing real time rendering and game engines.
arXiv Detail & Related papers (2021-12-23T22:27:55Z) - Neural Monocular 3D Human Motion Capture with Physical Awareness [76.55971509794598]
We present a new trainable system for physically plausible markerless 3D human motion capture.
Unlike most neural methods for human motion capture, our approach is aware of physical and environmental constraints.
It produces smooth and physically principled 3D motions in an interactive frame rate in a wide variety of challenging scenes.
arXiv Detail & Related papers (2021-05-03T17:57:07Z) - UNOC: Understanding Occlusion for Embodied Presence in Virtual Reality [12.349749717823736]
In this paper, we propose a new data-driven framework for inside-out body tracking.
We first collect a large-scale motion capture dataset with both body and finger motions.
We then simulate the occlusion patterns in head-mounted camera views on the captured ground truth using a ray casting algorithm and learn a deep neural network to infer the occluded body parts.
arXiv Detail & Related papers (2020-11-12T09:31:09Z) - SelfPose: 3D Egocentric Pose Estimation from a Headset Mounted Camera [97.0162841635425]
We present a solution to egocentric 3D body pose estimation from monocular images captured from downward looking fish-eye cameras installed on the rim of a head mounted VR device.
This unusual viewpoint leads to images with unique visual appearance, with severe self-occlusions and perspective distortions.
We propose an encoder-decoder architecture with a novel multi-branch decoder designed to account for the varying uncertainty in 2D predictions.
arXiv Detail & Related papers (2020-11-02T16:18:06Z) - Exploring Severe Occlusion: Multi-Person 3D Pose Estimation with Gated
Convolution [34.301501457959056]
We propose a temporal regression network with a gated convolution module to transform 2D joints to 3D.
A simple yet effective localization approach is also conducted to transform the normalized pose to the global trajectory.
Our proposed method outperforms most state-of-the-art 2D-to-3D pose estimation methods.
arXiv Detail & Related papers (2020-10-31T04:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.