論文の概要: Uncertainty-boosted Robust Video Activity Anticipation
- arxiv url: http://arxiv.org/abs/2404.18648v1
- Date: Mon, 29 Apr 2024 12:31:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 13:47:51.961393
- Title: Uncertainty-boosted Robust Video Activity Anticipation
- Title(参考訳): 不確かさに満ちたロバストビデオ活動予測
- Authors: Zhaobo Qi, Shuhui Wang, Weigang Zhang, Qingming Huang,
- Abstract要約: ビデオアクティビティの予測は、ロボットビジョンから自動運転まで幅広い応用可能性を受け入れることで、将来何が起こるかを予測することを目的としている。
近年の進展にもかかわらず、コンテンツ進化過程やイベントラベルの動的相関として反映されたデータ不確実性問題は、何らかの形で無視されている。
本研究では,予測結果の信頼性を示す不確実な値を生成する,不確実性を考慮した頑健なビデオアクティビティ予測フレームワークを提案する。
- 参考スコア(独自算出の注目度): 72.14155465769201
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video activity anticipation aims to predict what will happen in the future, embracing a broad application prospect ranging from robot vision and autonomous driving. Despite the recent progress, the data uncertainty issue, reflected as the content evolution process and dynamic correlation in event labels, has been somehow ignored. This reduces the model generalization ability and deep understanding on video content, leading to serious error accumulation and degraded performance. In this paper, we address the uncertainty learning problem and propose an uncertainty-boosted robust video activity anticipation framework, which generates uncertainty values to indicate the credibility of the anticipation results. The uncertainty value is used to derive a temperature parameter in the softmax function to modulate the predicted target activity distribution. To guarantee the distribution adjustment, we construct a reasonable target activity label representation by incorporating the activity evolution from the temporal class correlation and the semantic relationship. Moreover, we quantify the uncertainty into relative values by comparing the uncertainty among sample pairs and their temporal-lengths. This relative strategy provides a more accessible way in uncertainty modeling than quantifying the absolute uncertainty values on the whole dataset. Experiments on multiple backbones and benchmarks show our framework achieves promising performance and better robustness/interpretability. Source codes are available at https://github.com/qzhb/UbRV2A.
- Abstract(参考訳): ビデオアクティビティの予測は、ロボットビジョンから自律運転まで幅広い応用可能性を受け入れることで、将来何が起こるかを予測することを目的としている。
近年の進展にもかかわらず、コンテンツ進化過程やイベントラベルの動的相関として反映されたデータ不確実性問題は、何らかの形で無視されている。
これにより、モデル一般化能力とビデオコンテンツに対する深い理解が低下し、重大なエラーの蓄積と性能低下につながる。
本稿では、不確実性学習問題に対処し、予測結果の信頼性を示す不確実性値を生成する、不確実性を考慮した頑健なビデオアクティビティ予測フレームワークを提案する。
不確実性値は、予測された目標活動分布を変調するためにソフトマックス関数の温度パラメータを導出するために用いられる。
分布調整を保証するため、時間的クラス相関と意味的関係から活動の進化を組み込んだ合理的な目標活動ラベル表現を構築した。
さらに,サンプル対とその時間長の不確かさを比較することで,相対値に不確かさを定量化する。
この相対戦略は、データセット全体の絶対的不確実値を定量化するよりも、不確実性モデリングにおいてよりアクセスしやすい方法を提供する。
複数のバックボーンとベンチマークの実験は、我々のフレームワークが有望なパフォーマンスを実現し、堅牢性と解釈性が向上していることを示している。
ソースコードはhttps://github.com/qzhb/UbRV2Aで入手できる。
関連論文リスト
- Uncertainty for Active Learning on Graphs [70.44714133412592]
不確実性サンプリングは、機械学習モデルのデータ効率を改善することを目的とした、アクティブな学習戦略である。
予測の不確実性を超えた不確実性サンプリングをベンチマークし、他のアクティブラーニング戦略に対する大きなパフォーマンスギャップを強調します。
提案手法は,データ生成プロセスの観点から基幹的ベイズ不確実性推定法を開発し,不確実性サンプリングを最適クエリへ導く上での有効性を実証する。
論文 参考訳(メタデータ) (2024-05-02T16:50:47Z) - Existence Is Chaos: Enhancing 3D Human Motion Prediction with Uncertainty Consideration [27.28184416632815]
トレーニングデータにおける記録された動きは、所定の結果ではなく、将来の可能性の観測である可能性が示唆された。
不確実性を考慮した計算効率の良いエンコーダデコーダモデルを提案する。
論文 参考訳(メタデータ) (2024-03-21T03:34:18Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
我々は、複数のモデルを含む人間のポーズ予測のためのオープンソースのライブラリを開発し、複数のデータセットをサポートする。
我々は、パフォーマンスを高め、より良い信頼をもたらすために、問題の2つの不確実性を考案する。
論文 参考訳(メタデータ) (2023-04-13T17:56:08Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
データ駆動型ビジュアルオドメトリー(VO)は、自律エッジロボティクスにとって重要なサブルーチンである。
昆虫スケールドローンや外科ロボットのような最先端ロボットデバイスは、VOの予測の不確実性を推定する計算的に効率的な枠組みを欠いている。
本稿では,共形推論(CI)を利用してVOの不確実な帯域を抽出する,新しい,軽量で統計的に堅牢なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-03T20:37:55Z) - Toward Robust Uncertainty Estimation with Random Activation Functions [3.0586855806896045]
本稿では,ランダムアクティベーション関数(RAF)アンサンブルを用いた不確実性定量化手法を提案する。
RAF アンサンブルは、合成データセットと実世界のデータセットの両方において、最先端のアンサンブル不確実性定量化手法より優れている。
論文 参考訳(メタデータ) (2023-02-28T13:17:56Z) - Reliable Multimodal Trajectory Prediction via Error Aligned Uncertainty
Optimization [11.456242421204298]
よく校正されたモデルでは、不確実性推定はモデル誤差と完全に相関する。
本稿では,モデル誤差に整合した品質不確実性推定を導出するための,新しい誤差整合不確実性最適化手法を提案する。
本研究では, 平均変位誤差を1.69%, 4.69%, モデル誤差との不確実性相関を17.22%, 19.13%, ピアソン相関係数で定量化することにより, 平均変位誤差を1.69%, 4.69%改善することを示した。
論文 参考訳(メタデータ) (2022-12-09T12:33:26Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
自律運転における安全クリティカル画像セグメンテーションを実現するために、不確実性推定をどのように活用できるかを示す。
相似性関数によって測定された不一致予測に基づく新しい不確実性尺度を導入する。
本研究では,提案手法が競合手法よりも推論時間において計算集約性が低いことを示す。
論文 参考訳(メタデータ) (2021-05-28T09:23:05Z) - STUaNet: Understanding uncertainty in spatiotemporal collective human
mobility [11.436035608461966]
本研究では,内部データ品質と外部不確実性を同時に推定する不確実性学習機構を提案する。
提案手法は予測と不確かさの両面において優れていることを示す。
論文 参考訳(メタデータ) (2021-02-09T01:43:27Z) - Uncertainty Quantification for Deep Context-Aware Mobile Activity
Recognition and Unknown Context Discovery [85.36948722680822]
我々はα-βネットワークと呼ばれる深層モデルのコンテキスト認識混合を開発する。
高レベルの文脈を識別することで、精度とFスコアを10%向上させる。
トレーニングの安定性を確保するために、公開データセットと社内データセットの両方でクラスタリングベースの事前トレーニングを使用しました。
論文 参考訳(メタデータ) (2020-03-03T19:35:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。