FALE: Fairness-Aware ALE Plots for Auditing Bias in Subgroups
- URL: http://arxiv.org/abs/2404.18685v1
- Date: Mon, 29 Apr 2024 13:30:57 GMT
- Title: FALE: Fairness-Aware ALE Plots for Auditing Bias in Subgroups
- Authors: Giorgos Giannopoulos, Dimitris Sacharidis, Nikolas Theologitis, Loukas Kavouras, Ioannis Emiris,
- Abstract summary: We propose an explainability method tailored to identifying potential bias in subgroups and visualizing the findings in a user friendly manner to end users.
We envision FALE to function as an efficient, user friendly, comprehensible and reliable first-stage tool for identifying subgroups with potential bias issues.
- Score: 0.8528401618469597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fairness is steadily becoming a crucial requirement of Machine Learning (ML) systems. A particularly important notion is subgroup fairness, i.e., fairness in subgroups of individuals that are defined by more than one attributes. Identifying bias in subgroups can become both computationally challenging, as well as problematic with respect to comprehensibility and intuitiveness of the finding to end users. In this work we focus on the latter aspects; we propose an explainability method tailored to identifying potential bias in subgroups and visualizing the findings in a user friendly manner to end users. In particular, we extend the ALE plots explainability method, proposing FALE (Fairness aware Accumulated Local Effects) plots, a method for measuring the change in fairness for an affected population corresponding to different values of a feature (attribute). We envision FALE to function as an efficient, user friendly, comprehensible and reliable first-stage tool for identifying subgroups with potential bias issues.
Related papers
- Fairpriori: Improving Biased Subgroup Discovery for Deep Neural Network Fairness [21.439820064223877]
This paper introduces Fairpriori, a novel biased subgroup discovery method.
It incorporates the frequent itemset generation algorithm to facilitate effective and efficient investigation of intersectional bias.
Fairpriori demonstrates superior effectiveness and efficiency when identifying intersectional bias.
arXiv Detail & Related papers (2024-06-25T00:15:13Z) - Learning Informative Representation for Fairness-aware Multivariate
Time-series Forecasting: A Group-based Perspective [50.093280002375984]
Performance unfairness among variables widely exists in multivariate time series (MTS) forecasting models.
We propose a novel framework, named FairFor, for fairness-aware MTS forecasting.
arXiv Detail & Related papers (2023-01-27T04:54:12Z) - How Biased are Your Features?: Computing Fairness Influence Functions
with Global Sensitivity Analysis [38.482411134083236]
Fairness in machine learning has attained significant focus due to the widespread application in high-stake decision-making tasks.
We introduce the Fairness Influence Function (FIF), which breaks down bias into its components among individual features and the intersection of multiple features.
Experiments demonstrate that FairXplainer captures FIFs of individual feature and intersectional features, provides a better approximation of bias based on FIFs, demonstrates higher correlation of FIFs with fairness interventions, and detects changes in bias due to fairness affirmative/punitive actions in the classifier.
arXiv Detail & Related papers (2022-06-01T04:02:16Z) - Joint Multisided Exposure Fairness for Recommendation [76.75990595228666]
This paper formalizes a family of exposure fairness metrics that model the problem jointly from the perspective of both the consumers and producers.
Specifically, we consider group attributes for both types of stakeholders to identify and mitigate fairness concerns that go beyond individual users and items towards more systemic biases in recommendation.
arXiv Detail & Related papers (2022-04-29T19:13:23Z) - Are Your Reviewers Being Treated Equally? Discovering Subgroup
Structures to Improve Fairness in Spam Detection [13.26226951002133]
This paper addresses the challenges of defining, approximating, and utilizing a new subgroup structure for fair spam detection.
We first identify subgroup structures in the review graph that lead to discrepant accuracy in the groups.
Comprehensive comparisons against baselines on three large Yelp review datasets demonstrate that the subgroup membership can be identified and exploited for group fairness.
arXiv Detail & Related papers (2022-04-24T02:19:22Z) - Fair Group-Shared Representations with Normalizing Flows [68.29997072804537]
We develop a fair representation learning algorithm which is able to map individuals belonging to different groups in a single group.
We show experimentally that our methodology is competitive with other fair representation learning algorithms.
arXiv Detail & Related papers (2022-01-17T10:49:49Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
We tackle the problem of measuring group fairness under unawareness of sensitive attributes.
We show that quantification approaches are particularly suited to tackle the fairness-under-unawareness problem.
arXiv Detail & Related papers (2021-09-17T13:45:46Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
There are demographic biases present in current facial recognition (FR) models.
We introduce our Balanced Faces in the Wild dataset to measure these biases across different ethnic and gender subgroups.
We find that relying on a single score threshold to differentiate between genuine and imposters sample pairs leads to suboptimal results.
We propose a novel domain adaptation learning scheme that uses facial features extracted from state-of-the-art neural networks.
arXiv Detail & Related papers (2021-03-16T15:05:49Z) - FACT: A Diagnostic for Group Fairness Trade-offs [23.358566041117083]
Group fairness is a class of fairness notions that measure how different groups of individuals are treated differently according to their protected attributes.
We propose a general diagnostic that enables systematic characterization of these trade-offs in group fairness.
arXiv Detail & Related papers (2020-04-07T14:15:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.