論文の概要: A Universal Metric of Dataset Similarity for Cross-silo Federated Learning
- arxiv url: http://arxiv.org/abs/2404.18773v1
- Date: Mon, 29 Apr 2024 15:08:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 13:18:30.905632
- Title: A Universal Metric of Dataset Similarity for Cross-silo Federated Learning
- Title(参考訳): クロスサイロ・フェデレーション学習のためのデータセット類似性の普遍的尺度
- Authors: Ahmed Elhussein, Gamze Gursoy,
- Abstract要約: フェデレートラーニングは、データ共有なしにモデルトレーニングを容易にするために、医療などの分野でますます使われている。
本稿では,データセットの類似性を評価するための新しい指標を提案する。
本稿では,我々の測定値がモデル性能と堅牢かつ解釈可能な関係を示し,プライバシ保護方式で計算可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning is increasingly used in domains such as healthcare to facilitate collaborative model training without data-sharing. However, datasets located in different sites are often non-identically distributed, leading to degradation of model performance in FL. Most existing methods for assessing these distribution shifts are limited by being dataset or task-specific. Moreover, these metrics can only be calculated by exchanging data, a practice restricted in many FL scenarios. To address these challenges, we propose a novel metric for assessing dataset similarity. Our metric exhibits several desirable properties for FL: it is dataset-agnostic, is calculated in a privacy-preserving manner, and is computationally efficient, requiring no model training. In this paper, we first establish a theoretical connection between our metric and training dynamics in FL. Next, we extensively evaluate our metric on a range of datasets including synthetic, benchmark, and medical imaging datasets. We demonstrate that our metric shows a robust and interpretable relationship with model performance and can be calculated in privacy-preserving manner. As the first federated dataset similarity metric, we believe this metric can better facilitate successful collaborations between sites.
- Abstract(参考訳): フェデレートラーニングは、データ共有なしに協調的なモデルトレーニングを促進するために、医療などの領域でますます使われている。
しかし、異なる場所に位置するデータセットは、多くの場合、識別できない分散であり、FLにおけるモデル性能の低下につながる。
これらの分散シフトを評価する既存の方法のほとんどは、データセットやタスク固有性によって制限されている。
さらに、これらのメトリクスは、多くのFLシナリオで制限されたデータ交換によってのみ計算できる。
これらの課題に対処するために,データセットの類似性を評価するための新しい指標を提案する。
データセットに依存しず、プライバシ保護の方法で計算され、計算効率が良く、モデルトレーニングを必要としない。
本稿では,FLにおける測定値とトレーニング力学の理論的関係を最初に確立する。
次に、合成データセット、ベンチマークデータセット、医用画像データセットを含む、さまざまなデータセットに基づいて、我々のメトリクスを広範囲に評価する。
我々は,我々の測定値がモデル性能と頑健で解釈可能な関係を示し,プライバシ保護方式で計算できることを実証した。
最初のフェデレーションデータセットの類似度指標として、この指標はサイト間のコラボレーションを成功させるのに役立つと信じています。
関連論文リスト
- Piecewise-Linear Manifolds for Deep Metric Learning [8.670873561640903]
教師なしの深度学習は、ラベルなしデータのみを使用して意味表現空間を学習することに焦点を当てる。
本稿では,各低次元線形片が点の小さな近傍でデータ多様体を近似して高次元データ多様体をモデル化することを提案する。
我々は、この類似度推定が、現在の最先端技術の類似度推定よりも基礎的真理と相関していることを実証的に示す。
論文 参考訳(メタデータ) (2024-03-22T06:22:20Z) - SoK: Challenges and Opportunities in Federated Unlearning [32.0365189539138]
本論文は、この新興分野における研究動向と課題を特定することを目的として、未学習の未学習文学を深く研究することを目的としている。
論文 参考訳(メタデータ) (2024-03-04T19:35:08Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
我々は、計算異種データの形式化と処理を可能にする新しい集約フレームワークを導入し、分析する。
提案するアグリゲーションアルゴリズムは理論的および実験的予測から広範囲に解析される。
論文 参考訳(メタデータ) (2023-07-12T16:28:21Z) - FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in
Realistic Healthcare Settings [51.09574369310246]
Federated Learning(FL)は、センシティブなデータを保持している複数のクライアントが協力して機械学習モデルをトレーニングできる新しいアプローチである。
本稿では,医療分野に重点を置くクロスサイロ・データセット・スイートFLambyを提案し,クロスサイロ・FLの理論と実践のギャップを埋める。
私たちのフレキシブルでモジュラーなスイートによって、研究者は簡単にデータセットをダウンロードし、結果を再現し、研究のためにさまざまなコンポーネントを再利用することができます。
論文 参考訳(メタデータ) (2022-10-10T12:17:30Z) - FedDAR: Federated Domain-Aware Representation Learning [14.174833360938806]
クロスサイロ・フェデレーション・ラーニング(FL)は、医療のための機械学習アプリケーションにおいて有望なツールとなっている。
本稿では,ドメイン共有表現とドメインワイド・パーソナライズされた予測ヘッドを学習する新しい手法であるFedDARを提案する。
論文 参考訳(メタデータ) (2022-09-08T19:18:59Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Learning Similarity Metrics for Numerical Simulations [29.39625644221578]
本稿では,様々な数値シミュレーションソースから得られるデータを比較するため,安定かつ一般化された指標(LSiM)をニューラルネットワークで計算する手法を提案する。
提案手法は,計量の数学的性質を動機としたシームズネットワークアーキテクチャを用いている。
論文 参考訳(メタデータ) (2020-02-18T20:11:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。