論文の概要: A Survey on Vision Mamba: Models, Applications and Challenges
- arxiv url: http://arxiv.org/abs/2404.18861v1
- Date: Mon, 29 Apr 2024 16:51:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 12:48:52.977874
- Title: A Survey on Vision Mamba: Models, Applications and Challenges
- Title(参考訳): ビジョン・マンバに関する調査:モデル,応用,課題
- Authors: Rui Xu, Shu Yang, Yihui Wang, Bo Du, Hao Chen,
- Abstract要約: 最近の選択的構造化状態空間モデルであるMambaは、長いシーケンスモデリングタスクにおいて優れた性能を発揮する。
Mambaは畳み込みニューラルネットワークのモデリング制約を緩和し、Transformerと同様の高度なモデリング機能を提供する。
- 参考スコア(独自算出の注目度): 35.132647051030084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mamba, a recent selective structured state space model, performs excellently on long sequence modeling tasks. Mamba mitigates the modeling constraints of convolutional neural networks and offers advanced modeling capabilities similar to those of Transformers, through global receptive fields and dynamic weighting. Crucially, it achieves this without incurring the quadratic computational complexity typically associated with Transformers. Due to its advantages over the former two mainstream foundation models, Mamba exhibits great potential to be a visual foundation model. Researchers are actively applying Mamba to various computer vision tasks, leading to numerous emerging works. To help keep pace with the rapid advancements in computer vision, this paper aims to provide a comprehensive review of visual Mamba approaches. This paper begins by delineating the formulation of the original Mamba model. Subsequently, our review of visual Mamba delves into several representative backbone networks to elucidate the core insights of the visual Mamba. We then categorize related works using different modalities, including image, video, point cloud, multi-modal, and others. Specifically, for image applications, we further organize them into distinct tasks to facilitate a more structured discussion. Finally, we discuss the challenges and future research directions for visual Mamba, providing insights for future research in this quickly evolving area. A comprehensive list of visual Mamba models reviewed in this work is available at https://github.com/Ruixxxx/Awesome-Vision-Mamba-Models.
- Abstract(参考訳): 最近の選択的構造化状態空間モデルであるMambaは、長いシーケンスモデリングタスクにおいて優れた性能を発揮する。
Mambaは畳み込みニューラルネットワークのモデリング制約を緩和し、グローバルな受容場と動的重み付けを通じてトランスフォーマーと同様の高度なモデリング機能を提供する。
重要なことに、トランスフォーマーに典型的に関連する2次計算複雑性を生じさせることなく、これを達成している。
以前の2つの主流基盤モデルよりも優位性があるため、Mambaは視覚的基礎モデルになる大きな可能性を秘めている。
研究者は、様々なコンピュータビジョンタスクにMambaを積極的に応用し、多くの新しい作品を生み出している。
本稿では,コンピュータビジョンの急速な進歩に対応するために,視覚的マンバのアプローチを包括的に検証することを目的とする。
この論文は、オリジナルのマンバモデルの定式化を記述することから始まる。
その後、視覚的マンバをいくつかの代表的なバックボーンネットワークに分解し、視覚的マンバのコアインサイトを解明する。
次に、画像、ビデオ、ポイントクラウド、マルチモーダルなど、さまざまなモダリティを用いて関連する作品を分類する。
具体的には、画像アプリケーションに対して、より構造化された議論を促進するために、それらを個別のタスクに整理する。
最後に,視覚的マンバの課題と今後の研究方向性について論じ,この急速に発展する領域における今後の研究への洞察を提供する。
この作業でレビューされた視覚的マンバモデルの包括的なリストはhttps://github.com/Ruixxxx/Awesome-Vision-Mamba-Modelsで公開されている。
関連論文リスト
- Mamba in Vision: A Comprehensive Survey of Techniques and Applications [3.4580301733198446]
Mambaは、コンピュータビジョンにおいて、畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)が直面する課題を克服するための、新しいアプローチとして登場した。
MambaはSelective Structured State Space Modelsを活用して、線形計算の複雑さで長距離依存を効果的に捉えることで、これらの制限に対処する。
論文 参考訳(メタデータ) (2024-10-04T02:58:49Z) - A Comprehensive Survey of Mamba Architectures for Medical Image Analysis: Classification, Segmentation, Restoration and Beyond [2.838321145442743]
Mambaは、医用画像分析におけるテンプレートベースのディープラーニングアプローチに代わるものだ。
線形時間の複雑さがあり、トランスよりも大幅に改善されている。
Mambaは、注意機構のない長いシーケンスを処理し、高速な推論を可能にし、メモリを少なくする。
論文 参考訳(メタデータ) (2024-10-03T10:23:03Z) - A Survey of Mamba [27.939712558507516]
近年,基礎モデル構築の代替手段として,Mambaという新しいアーキテクチャが登場している。
本研究では,マンバモデルの発展,多様なデータにマンバを適応させる技術,およびマンバが優れている応用について検討する。
論文 参考訳(メタデータ) (2024-08-02T09:18:41Z) - MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
本稿では,視覚応用に適した新しいハイブリッド型Mamba-TransformerバックボーンであるMambaVisionを提案する。
私たちのコアコントリビューションには、視覚的特徴の効率的なモデリング能力を高めるために、Mambaの定式化を再設計することが含まれています。
視覚変換器(ViT)とマンバの統合可能性に関する包括的アブレーション研究を行う。
論文 参考訳(メタデータ) (2024-07-10T23:02:45Z) - DeciMamba: Exploring the Length Extrapolation Potential of Mamba [89.07242846058023]
本研究では,マンバに特化して設計された文脈拡張手法であるDeciMambaを紹介する。
DeciMambaは、トレーニング中に見たものよりも25倍長く、余分な計算資源を使わずに、コンテキスト長を外挿できることを示す。
論文 参考訳(メタデータ) (2024-06-20T17:40:18Z) - MambaOut: Do We Really Need Mamba for Vision? [70.60495392198686]
状態空間モデル(SSM)のRNNライクなトークンミキサーを備えたアーキテクチャであるMambaが最近導入され、注意機構の2次複雑さに対処した。
本論文は,マンバが長周期および自己回帰特性を有するタスクに理想的に適していることを概念的に結論づける。
我々は,コアトークンミキサーであるSSMを除去しながら,Mambaブロックを積み重ねることで,MambaOutという名前の一連のモデルを構築する。
論文 参考訳(メタデータ) (2024-05-13T17:59:56Z) - Vision Mamba: A Comprehensive Survey and Taxonomy [11.025533218561284]
状態空間モデル (State Space Model, SSM) は、動的システムの振る舞いを記述・解析するために用いられる数学的モデルである。
最新の状態空間モデルに基づいて、Mambaは時間変化パラメータをSSMにマージし、効率的なトレーニングと推論のためのハードウェア認識アルゴリズムを定式化する。
Mambaは、Transformerを上回る可能性のある、新たなAIアーキテクチャになることが期待されている。
論文 参考訳(メタデータ) (2024-05-07T15:30:14Z) - A Survey on Visual Mamba [16.873917203618365]
選択機構とハードウェア対応アーキテクチャを備えた状態空間モデル(SSM)、すなわちMambaは、最近、長いシーケンスモデリングにおいて大きな可能性を証明している。
トランスにおける自己注意機構は、画像サイズと計算要求の増加と2次複雑さを持つため、研究者らは現在、コンピュータビジョンタスクにMambaを適用する方法を模索している。
本稿では,コンピュータビジョン分野におけるMambaモデルの詳細分析を目的とした,初めての総合的な調査である。
論文 参考訳(メタデータ) (2024-04-24T16:23:34Z) - ReMamber: Referring Image Segmentation with Mamba Twister [51.291487576255435]
ReMamberは、マルチモーダルなMamba TwisterブロックとMambaのパワーを統合する新しいRISアーキテクチャである。
Mamba Twisterは画像とテキストのインタラクションを明示的にモデル化し、独自のチャネルと空間的ツイスト機構を通じてテキストと視覚的特徴を融合する。
論文 参考訳(メタデータ) (2024-03-26T16:27:37Z) - Video Mamba Suite: State Space Model as a Versatile Alternative for Video Understanding [49.88140766026886]
状態空間モデルMambaは、長周期モデリングからビデオモデリングへの成功を拡大する有望な特性を示している。
我々は、マンバがビデオのモデリングにおいて様々な役割を担い、マンバが優位性を示す様々なタスクを調査しながら、包括的な研究を行う。
実験の結果,ビデオ専用タスクとビデオ言語タスクの両方において,Mambaの強い可能性を示すとともに,有望な効率と性能のトレードオフを示すことができた。
論文 参考訳(メタデータ) (2024-03-14T17:57:07Z) - Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining [85.08169822181685]
本稿では,医療画像のセグメンテーションに特化して設計された新しいマンバモデルSwin-UMambaを紹介する。
Swin-UMamba は CNN や ViT,最新の Mamba ベースのモデルと比較して,優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-05T18:58:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。