The impact of noise on the simulation of NMR spectroscopy on NISQ devices
- URL: http://arxiv.org/abs/2404.18903v2
- Date: Mon, 15 Jul 2024 14:34:29 GMT
- Title: The impact of noise on the simulation of NMR spectroscopy on NISQ devices
- Authors: Andisheh Khedri, Pascal Stadler, Kirsten Bark, Matteo Lodi, Rolando Reiner, Nicolas Vogt, Michael Marthaler, Juha Leppäkangas,
- Abstract summary: We present the simulation of nuclear magnetic resonance (NMR) spectroscopy of small organic molecules with two promising quantum computing platforms.
We analyze the impact of noise on the obtained NMR spectra, and we formulate an effective decoherence rate that quantifies the threshold noise that our proposed algorithm can tolerate.
- Score: 0.5224038339798621
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the simulation of nuclear magnetic resonance (NMR) spectroscopy of small organic molecules with two promising quantum computing platforms, namely IBM's quantum processors based on superconducting qubits and IonQ's Aria trapped ion quantum computer addressed via Amazon Braket. We analyze the impact of noise on the obtained NMR spectra, and we formulate an effective decoherence rate that quantifies the threshold noise that our proposed algorithm can tolerate. Furthermore we showcase how our noise analysis allows us to improve the spectra. Our investigations pave the way to better employ such application-driven quantum tasks on current noisy quantum devices.
Related papers
- Understanding and mitigating noise in molecular quantum linear response for spectroscopic properties on quantum computers [0.0]
We present a study of quantum linear response theory obtaining spectroscopic properties on simulated fault-tolerant quantum computers.
This work introduces novel metrics to analyze and predict the origins of noise in the quantum algorithm.
We highlight the significant impact of Pauli saving in reducing measurement costs and noise.
arXiv Detail & Related papers (2024-08-17T23:46:17Z) - Towards quantum utility for NMR quantum simulation on a NISQ computer [0.0]
We investigate the application of noisy intermediate-scale quantum devices for simulating nuclear magnetic resonance (NMR) experiments.
We show the results of simulations of proton NMR spectra on relevant molecules with up to 11 spins, and up to a total of 47 atoms, and compare them with real NMR experiments.
Despite current limitations, we show that a similar approach will eventually lead to a case of quantum utility.
arXiv Detail & Related papers (2024-04-26T17:22:24Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Entanglement-enhanced dual-comb spectroscopy [0.7340017786387767]
Dual-comb interferometry harnesses the interference of two laser frequency combs to provide unprecedented capability in spectroscopy applications.
We propose an entanglement-enhanced dual-comb spectroscopy protocol that leverages quantum resources to significantly improve the signal-to-noise ratio performance.
Our results show significant quantum advantages in the uW to mW power range, making this technique particularly attractive for biological and chemical sensing applications.
arXiv Detail & Related papers (2023-04-04T03:57:53Z) - Noise-assisted digital quantum simulation of open systems [1.3124513975412255]
We present a novel approach that capitalizes on the intrinsic noise of quantum devices to reduce the computational resources required for simulating open quantum systems.
Specifically, we selectively enhance or reduce decoherence rates in the quantum circuit to achieve the desired simulation of open system dynamics.
arXiv Detail & Related papers (2023-02-28T14:21:43Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Multi-level Quantum Noise Spectroscopy [40.434546680037606]
Existing quantum noise spectroscopy protocols measure an aggregate amount of noise affecting a quantum system.
We propose and experimentally validate a spin-locking-based QNS protocol that exploits the multi-level energy structure of a superconducting qubit.
arXiv Detail & Related papers (2020-03-05T17:31:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.