Quantum noise in a squeezed-light-enhanced multiparameter quantum sensor
- URL: http://arxiv.org/abs/2506.08190v1
- Date: Mon, 09 Jun 2025 20:00:51 GMT
- Title: Quantum noise in a squeezed-light-enhanced multiparameter quantum sensor
- Authors: Aleksandra Sierant, Diana Méndez-Avalos, Santiago Tabares Giraldo, Morgan W. Mitchell,
- Abstract summary: We study quantum enhancement of sensitivity using squeezed light in a quantum sensor.<n>The hOPM acquires both the dc field strength (scalar magnetometry) and resonantly detects one quadrature of the ac magnetic field at a chosen frequency.<n>We observe these interactions using squeezed light as a tool to control the distribution of quantum noise between $S$ and $S_3$ Stokes components.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study quantum enhancement of sensitivity using squeezed light in a multi-parameter quantum sensor, the hybrid rf-dc optically pumped magnetometer (hOPM) [Phys. Rev. Applied 21, 034054, (2024)]. Using a single spin ensemble, the hOPM acquires both the dc field strength (scalar magnetometry), and resonantly detects one quadrature of the ac magnetic field at a chosen frequency (rf magnetometry). In contrast to the Bell-Bloom scalar magnetometer (BBOPM) [Phys. Rev. Lett. 127, 193601 (2021)], the back-action evasion in the hOPM is incomplete, leading to a complex interplay of the three quantum noise sources in this system: photon shot noise, spin projection noise, and measurement back-action noise. We observe these interactions using squeezed light as a tool to control the distribution of optical quantum noise between $S_2$ and $S_3$ polarization Stokes components, and the resulting effect on readout quantum noise and measurement back-action.
Related papers
- Noise Mitigation in Single Microwave Photon Counting by Cascaded Quantum Measurements [32.73124984242397]
Single microwave photon detectors (SMPDs) have only recently been demonstrated.<n>These detectors offer a substantial advantage over quantum-limited amplification schemes.<n>We report an intrinsic sensitivity of $8(1)times10-24textW/sqrttextHz$, with an operational sensitivity of $5.9(6)times 10-23textW/sqrttextHz$ limited by thermal photons in the input line.
arXiv Detail & Related papers (2025-02-20T18:26:48Z) - Simulating polaritonic ground states on noisy quantum devices [0.0]
We introduce a general framework for simulating electron-photon coupled systems on small, noisy quantum devices.
To achieve chemical accuracy, we exploit various symmetries in qubit reduction methods.
We measure two properties: ground-state energy, fundamentally relevant to chemical reactivity, and photon number.
arXiv Detail & Related papers (2023-10-03T14:45:54Z) - Cooperative Spin Amplification [4.561604895218612]
We demonstrate a new signal amplification using cooperative 129Xe nuclear spins embedded within a feedback circuit.
We realize an ultrahigh magnetic sensitivity of 4.0 fT/Hz$1/2$ that surpasses the photon-shot noise.
Our findings extend the physics of quantum amplification to cooperative spin systems and can be generalized to a wide variety of existing sensors.
arXiv Detail & Related papers (2023-09-20T14:55:34Z) - Multiparameter quantum sensing and magnetic communications with a hybrid dc and rf optically pumped magnetometer [41.94295877935867]
We introduce and demonstrate a hybrid optically pumped magnetometer (HOPM) that simultaneously measures one dc field component and one RF field component quadrature.
The HOPM achieves sub-pT/$sqrtmathrmHz$ sensitivity for both dc and RF fields, and is limited in sensitivity by spin projection noise at low frequencies and by photon shot noise at high frequencies.
arXiv Detail & Related papers (2023-08-27T22:17:21Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Multi-channel quantum noise suppression and phase-sensitive modulation
in a hybrid optical resonant cavity system [5.972427726090171]
Multiple dark windows similar to electromagnetic induction transparency (EIT) are observed in quantum noise fluctuation curve.
Noise suppression can be up to 13.9 dB when the pumping light power is 6.5 Beta_th.
Phase-sensitive modulation scheme is demonstrated, which fills the gap that multi-channel quantum noise suppression is difficult to realize at the quadrature amplitude of squeezed field.
arXiv Detail & Related papers (2022-11-26T17:46:37Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Coherently excited Hong-Ou-Mandel effects using frequency-path
correlation [0.0]
The Hong-Ou-Mandel (HOM) effect relates to the two-photon intensity correlation on a beam splitter, resulting in a nonclassical photon-bunching phenomenon.
Here, a coherence version of the HOM effect is proposed and analyzed to understand the fundamental physics of the anticorrelation and entanglement.
arXiv Detail & Related papers (2022-04-04T23:55:22Z) - Quantum sensitivity limits of nuclear magnetic resonance experiments
searching for new fundamental physics [91.6474995587871]
Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter.
We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise.
arXiv Detail & Related papers (2021-03-10T19:00:02Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.