論文の概要: Point Cloud Models Improve Visual Robustness in Robotic Learners
- arxiv url: http://arxiv.org/abs/2404.18926v1
- Date: Mon, 29 Apr 2024 17:59:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 12:39:07.401951
- Title: Point Cloud Models Improve Visual Robustness in Robotic Learners
- Title(参考訳): ポイントクラウドモデルによるロボット学習者の視覚的ロバスト性の改善
- Authors: Skand Peri, Iain Lee, Chanho Kim, Li Fuxin, Tucker Hermans, Stefan Lee,
- Abstract要約: 我々は、新しいポイントクラウドワールドモデル(PCWM)とポイントクラウドベースの制御ポリシーを導入する。
我々の実験によると、ポイントクラウドを明示的にエンコードするポリシーは、RGB-Dのポリシーよりもはるかに堅牢である。
これらの結果は、点雲を通して3Dシーンを推論することで、パフォーマンスを改善し、学習時間を短縮し、ロボット学習者の堅牢性を高めることを示唆している。
- 参考スコア(独自算出の注目度): 18.23824531384375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual control policies can encounter significant performance degradation when visual conditions like lighting or camera position differ from those seen during training -- often exhibiting sharp declines in capability even for minor differences. In this work, we examine robustness to a suite of these types of visual changes for RGB-D and point cloud based visual control policies. To perform these experiments on both model-free and model-based reinforcement learners, we introduce a novel Point Cloud World Model (PCWM) and point cloud based control policies. Our experiments show that policies that explicitly encode point clouds are significantly more robust than their RGB-D counterparts. Further, we find our proposed PCWM significantly outperforms prior works in terms of sample efficiency during training. Taken together, these results suggest reasoning about the 3D scene through point clouds can improve performance, reduce learning time, and increase robustness for robotic learners. Project Webpage: https://pvskand.github.io/projects/PCWM
- Abstract(参考訳): 視覚的なコントロールポリシーは、照明やカメラの位置といった視覚的な条件がトレーニング中に見られるものと異なる場合、パフォーマンスが著しく低下する可能性がある。
本研究では,RGB-Dとポイントクラウドに基づく視覚制御ポリシに対する,このような視覚的変化の集合に対する堅牢性について検討する。
モデルフリーおよびモデルベース強化学習者の両方でこれらの実験を行うため、新しいポイントクラウドワールドモデル(PCWM)とポイントクラウドベースの制御ポリシーを導入する。
我々の実験によると、ポイントクラウドを明示的にエンコードするポリシーは、RGB-Dのポリシーよりもはるかに堅牢である。
さらに,提案したPCWMは,トレーニング中のサンプル効率において,先行作業よりも有意に優れていた。
これらの結果は、点雲を通して3Dシーンを推論することで、パフォーマンスを改善し、学習時間を短縮し、ロボット学習者の堅牢性を高めることを示唆している。
プロジェクトWebページ: https://pvskand.github.io/projects/PCWM
関連論文リスト
- P2P-Bridge: Diffusion Bridges for 3D Point Cloud Denoising [81.92854168911704]
私たちは、Diffusion Schr"odingerブリッジをポイントクラウドに適応させる新しいフレームワークを通じて、ポイントクラウドを飾るタスクに取り組みます。
オブジェクトデータセットの実験では、P2P-Bridgeは既存のメソッドよりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-08-29T08:00:07Z) - Point Cloud Matters: Rethinking the Impact of Different Observation Spaces on Robot Learning [58.69297999175239]
ロボット学習においては、異なるモードの異なる特徴のために観察空間が不可欠である。
本研究では,RGB, RGB-D, 点雲の3つのモードに着目し, 様々な観測空間がロボット学習に与える影響について検討する。
論文 参考訳(メタデータ) (2024-02-04T14:18:45Z) - Adaptive Point Transformer [88.28498667506165]
Adaptive Point Cloud Transformer (AdaPT) は、適応トークン選択機構によって強化された標準PTモデルである。
AdaPTは推論中のトークン数を動的に削減し、大きな点雲の効率的な処理を可能にする。
論文 参考訳(メタデータ) (2024-01-26T13:24:45Z) - Test-Time Augmentation for 3D Point Cloud Classification and
Segmentation [40.62640761825697]
データ拡張は、ディープラーニングタスクのパフォーマンスを向上させるための強力なテクニックである。
本研究は,3次元点雲に対するTTA(Test-time augmentation)について検討する。
論文 参考訳(メタデータ) (2023-11-22T04:31:09Z) - Point2Vec for Self-Supervised Representation Learning on Point Clouds [66.53955515020053]
Data2vecをポイントクラウド領域に拡張し、いくつかのダウンストリームタスクで推奨される結果を報告します。
我々は、ポイントクラウド上でData2vecライクな事前トレーニングの可能性を解放するpoint2vecを提案する。
論文 参考訳(メタデータ) (2023-03-29T10:08:29Z) - ViPFormer: Efficient Vision-and-Pointcloud Transformer for Unsupervised
Pointcloud Understanding [3.7966094046587786]
単一アーキテクチャで画像とポイントクラウド処理を統合する軽量なViPFormer(ViPFormer)を提案する。
ViPFormerは、モーダル内およびクロスモーダルのコントラスト目的を最適化することにより、教師なしの方法で学習する。
異なるデータセットの実験では、ViPFormerは、より精度が高く、モデルの複雑さが低く、実行レイテンシが低い、従来の最先端の教師なしメソッドを上回っている。
論文 参考訳(メタデータ) (2023-03-25T06:47:12Z) - EPCL: Frozen CLIP Transformer is An Efficient Point Cloud Encoder [60.52613206271329]
本稿では,冷凍CLIP変換器を用いて高品質のクラウドモデルをトレーニングするための textbfEfficient textbfPoint textbfCloud textbfLearning (EPCL) を提案する。
我々のEPCLは、2D-3Dデータをペア化せずに画像の特徴と点雲の特徴を意味的に整合させることで、2Dと3Dのモダリティを接続する。
論文 参考訳(メタデータ) (2022-12-08T06:27:11Z) - Lateral Ego-Vehicle Control without Supervision using Point Clouds [50.40632021583213]
既存の視覚に基づく横方向の車両制御に対する教師付きアプローチは、RGB画像を適切な操舵コマンドに直接マッピングすることができる。
本稿では、横方向の車両制御のための、より堅牢でスケーラブルなモデルをトレーニングするためのフレームワークを提案する。
オンライン実験により,本手法の性能は教師付きモデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-03-20T21:57:32Z) - Self-supervised Learning of Point Clouds via Orientation Estimation [19.31778462735251]
ラベルの少ないポイントクラウドでダウンストリームタスクを学習するために、私たちは3Dセルフスーパービジョンを活用しています。
点雲は無限に多くの方法で回転することができるので、自己超越のためにリッチなラベルのない情報源を提供する。
論文 参考訳(メタデータ) (2020-08-01T17:49:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。