論文の概要: GuideWalk -- Heterogeneous Data Fusion for Enhanced Learning -- A Multiclass Document Classification Case
- arxiv url: http://arxiv.org/abs/2404.18942v1
- Date: Thu, 25 Apr 2024 18:48:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 18:39:28.275844
- Title: GuideWalk -- Heterogeneous Data Fusion for Enhanced Learning -- A Multiclass Document Classification Case
- Title(参考訳): GuideWalk -- 拡張学習のための異種データ融合 -- 多クラス文書分類ケース
- Authors: Sarmad N. Mohammed, Semra Gündüç,
- Abstract要約: 意味のある文のグラフ構造に基づく新しい埋め込み法を提案する。
本手法の有効性を分類問題において検証した。
提案手法は,実世界のデータセットと8つのよく知られた,成功した埋め込みアルゴリズムを用いて検証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the prime problems of computer science and machine learning is to extract information efficiently from large-scale, heterogeneous data. Text data, with its syntax, semantics, and even hidden information content, possesses an exceptional place among the data types in concern. The processing of the text data requires embedding, a method of translating the content of the text to numeric vectors. A correct embedding algorithm is the starting point for obtaining the full information content of the text data. In this work, a new embedding method based on the graph structure of the meaningful sentences is proposed. The design of the algorithm aims to construct an embedding vector that constitutes syntactic and semantic elements as well as the hidden content of the text data. The success of the proposed embedding method is tested in classification problems. Among the wide range of application areas, text classification is the best laboratory for embedding methods; the classification power of the method can be tested using dimensional reduction without any further processing. Furthermore, the method can be compared with different embedding algorithms and machine learning methods. The proposed method is tested with real-world data sets and eight well-known and successful embedding algorithms. The proposed embedding method shows significantly better classification for binary and multiclass datasets compared to well-known algorithms.
- Abstract(参考訳): 計算機科学と機械学習の主な問題のひとつは、大規模な異種データから情報を効率的に抽出することである。
テキストデータは、その構文、セマンティクス、さらには隠された情報コンテンツによって、懸念されるデータ型の中で例外的な位置を占める。
テキストデータの処理には埋め込みが必要である。
正しい埋め込みアルゴリズムは、テキストデータの完全な情報内容を取得するための出発点である。
本研究では,意味文のグラフ構造に基づく新しい埋め込み手法を提案する。
このアルゴリズムの設計は、テキストデータの隠された内容だけでなく、構文的および意味的要素を構成する埋め込みベクトルを構築することを目的としている。
本手法の有効性を分類問題において検証した。
応用分野の広い範囲において, テキスト分類は埋込工法に最適な実験室であり, その分類能力は, さらなる処理を伴わずに次元還元法を用いて検証することができる。
さらに、異なる埋め込みアルゴリズムや機械学習手法と比較することができる。
提案手法は,実世界のデータセットと8つのよく知られた,成功した埋め込みアルゴリズムを用いて検証する。
提案手法は、よく知られたアルゴリズムと比較して、バイナリとマルチクラスデータセットの分類がかなり優れていることを示す。
関連論文リスト
- Employing Sentence Space Embedding for Classification of Data Stream from Fake News Domain [0.24999074238880487]
本稿では,文空間法を用いた自然言語データストリーム分類手法を提案する。
画像分類専用の畳み込みディープネットワークを使用することで、テキストデータに基づいてフェイクニュースを認識できる。
実生活のFakedditデータセットに基づいて,提案手法をデータストリーム分類のための最先端アルゴリズムと比較した。
論文 参考訳(メタデータ) (2024-07-15T15:23:21Z) - Relation-aware Ensemble Learning for Knowledge Graph Embedding [68.94900786314666]
我々は,既存の手法を関係性に配慮した方法で活用し,アンサンブルを学習することを提案する。
関係認識アンサンブルを用いてこれらのセマンティクスを探索すると、一般的なアンサンブル法よりもはるかに大きな検索空間が得られる。
本稿では,リレーショナルなアンサンブル重みを独立に検索する分割探索合成アルゴリズムRelEns-DSCを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:40:12Z) - Text Classification: A Perspective of Deep Learning Methods [0.0679877553227375]
本稿では,テキスト分類作業に必要な重要なステップを含む,深層学習に基づくテキスト分類アルゴリズムを提案する。
論文の最後には、異なる深層学習テキスト分類法を比較し、要約する。
論文 参考訳(メタデータ) (2023-09-24T21:49:51Z) - A Novel Ehanced Move Recognition Algorithm Based on Pre-trained Models
with Positional Embeddings [6.688643243555054]
要約の認識は、コンテンツを効果的に特定し、記事を明確にするために重要である。
本稿では,中国科学・技術論文の非構造的抽象化に対する注意機構を備えた,改良された事前学習モデルとゲートネットワークを備えた新しい動き認識アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-14T03:20:28Z) - A Gold Standard Dataset for the Reviewer Assignment Problem [117.59690218507565]
類似度スコア(Similarity score)とは、論文のレビューにおいて、レビュアーの専門知識を数値で見積もるものである。
私たちのデータセットは、58人の研究者による477の自己申告された専門知識スコアで構成されています。
2つの論文をレビュアーに関連付けるタスクは、簡単なケースでは12%~30%、ハードケースでは36%~43%である。
論文 参考訳(メタデータ) (2023-03-23T16:15:03Z) - A Deep Learning Anomaly Detection Method in Textual Data [0.45687771576879593]
本稿では,従来の機械学習アルゴリズムと組み合わせたディープラーニングとトランスフォーマーアーキテクチャを提案する。
我々は、異常を予測するために、文変換器、オート、ロジスティック回帰、距離計算など、複数の機械学習手法を使用した。
論文 参考訳(メタデータ) (2022-11-25T05:18:13Z) - LeQua@CLEF2022: Learning to Quantify [76.22817970624875]
LeQua 2022は、テキストデータセットで'を定量化する方法を評価するための新しい実験室である。
本研究の目的は、バイナリ設定とシングルラベルのマルチクラス設定の両方において、学習方法の比較評価のための設定を提供することである。
論文 参考訳(メタデータ) (2021-11-22T14:54:20Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - A Framework and Benchmarking Study for Counterfactual Generating Methods
on Tabular Data [0.0]
カウンターファクトな説明は、機械学習の予測を説明する効果的な方法と見なされる。
このような説明を導き出そうとするアルゴリズムは、すでに数十ある。
ベンチマーク研究とフレームワークは、実践者がどのテクニックとビルディングブロックが最も適しているかを決定するのに役立ちます。
論文 参考訳(メタデータ) (2021-07-09T21:06:03Z) - Unsupervised Document Embedding via Contrastive Augmentation [48.71917352110245]
本稿では,教師なしで文書表現を学習するためのデータ拡張手法と対比学習手法を提案する。
画像と事前学習に使われる最近のコントラスト的自己教師付き学習アルゴリズムに触発されて、高品質な文書埋め込みは様々なパラフレーズに不変であるべきだと仮定した。
本手法は,文書分類作業におけるSOTA手法よりも最大6.4%の分類誤差率を減少させることができる。
論文 参考訳(メタデータ) (2021-03-26T15:48:52Z) - A Comparative Study on Structural and Semantic Properties of Sentence
Embeddings [77.34726150561087]
本稿では,関係抽出に広く利用されている大規模データセットを用いた実験セットを提案する。
異なる埋め込み空間は、構造的および意味的特性に対して異なる強度を持つことを示す。
これらの結果は,埋め込み型関係抽出法の開発に有用な情報を提供する。
論文 参考訳(メタデータ) (2020-09-23T15:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。