Multimodal Fusion on Low-quality Data: A Comprehensive Survey
- URL: http://arxiv.org/abs/2404.18947v3
- Date: Fri, 01 Nov 2024 13:53:44 GMT
- Title: Multimodal Fusion on Low-quality Data: A Comprehensive Survey
- Authors: Qingyang Zhang, Yake Wei, Zongbo Han, Huazhu Fu, Xi Peng, Cheng Deng, Qinghua Hu, Cai Xu, Jie Wen, Di Hu, Changqing Zhang,
- Abstract summary: This paper surveys the common challenges and recent advances of multimodal fusion in the wild.
We identify four main challenges that are faced by multimodal fusion on low-quality data.
This new taxonomy will enable researchers to understand the state of the field and identify several potential directions.
- Score: 110.22752954128738
- License:
- Abstract: Multimodal fusion focuses on integrating information from multiple modalities with the goal of more accurate prediction, which has achieved remarkable progress in a wide range of scenarios, including autonomous driving and medical diagnosis. However, the reliability of multimodal fusion remains largely unexplored especially under low-quality data settings. This paper surveys the common challenges and recent advances of multimodal fusion in the wild and presents them in a comprehensive taxonomy. From a data-centric view, we identify four main challenges that are faced by multimodal fusion on low-quality data, namely (1) noisy multimodal data that are contaminated with heterogeneous noises, (2) incomplete multimodal data that some modalities are missing, (3) imbalanced multimodal data that the qualities or properties of different modalities are significantly different and (4) quality-varying multimodal data that the quality of each modality dynamically changes with respect to different samples. This new taxonomy will enable researchers to understand the state of the field and identify several potential directions. We also provide discussion for the open problems in this field together with interesting future research directions.
Related papers
- Multimodal Alignment and Fusion: A Survey [7.250878248686215]
Multimodal integration enables improved model accuracy and broader applicability.
We systematically categorize and analyze existing alignment and fusion techniques.
This survey focuses on applications in domains like social media analysis, medical imaging, and emotion recognition.
arXiv Detail & Related papers (2024-11-26T02:10:27Z) - Multimodal Object Detection via Probabilistic a priori Information Integration [0.0]
Multimodal object detection has shown promise in remote sensing.
In this paper, we investigate multimodal object detection where only one modality contains the target object.
We propose to resolve the alignment problem by converting the contextual binary information into probability maps.
arXiv Detail & Related papers (2024-05-24T14:28:06Z) - Read, Look or Listen? What's Needed for Solving a Multimodal Dataset [7.0430001782867]
We propose a two-step method to analyze multimodal datasets, which leverages a small seed of human annotation to map each multimodal instance to the modalities required to process it.
We apply our approach to TVQA, a video question-answering dataset, and discover that most questions can be answered using a single modality, without a substantial bias towards any specific modality.
We analyze the MERLOT Reserve, finding that it struggles with image-based questions compared to text and audio, but also with auditory speaker identification.
arXiv Detail & Related papers (2023-07-06T08:02:45Z) - Deep Equilibrium Multimodal Fusion [88.04713412107947]
Multimodal fusion integrates the complementary information present in multiple modalities and has gained much attention recently.
We propose a novel deep equilibrium (DEQ) method towards multimodal fusion via seeking a fixed point of the dynamic multimodal fusion process.
Experiments on BRCA, MM-IMDB, CMU-MOSI, SUN RGB-D, and VQA-v2 demonstrate the superiority of our DEQ fusion.
arXiv Detail & Related papers (2023-06-29T03:02:20Z) - Provable Dynamic Fusion for Low-Quality Multimodal Data [94.39538027450948]
Dynamic multimodal fusion emerges as a promising learning paradigm.
Despite its widespread use, theoretical justifications in this field are still notably lacking.
This paper provides theoretical understandings to answer this question under a most popular multimodal fusion framework from the generalization perspective.
A novel multimodal fusion framework termed Quality-aware Multimodal Fusion (QMF) is proposed, which can improve the performance in terms of classification accuracy and model robustness.
arXiv Detail & Related papers (2023-06-03T08:32:35Z) - Reliable Multimodality Eye Disease Screening via Mixture of Student's t
Distributions [49.4545260500952]
We introduce a novel multimodality evidential fusion pipeline for eye disease screening, EyeMoSt.
Our model estimates both local uncertainty for unimodality and global uncertainty for the fusion modality to produce reliable classification results.
Our experimental findings on both public and in-house datasets show that our model is more reliable than current methods.
arXiv Detail & Related papers (2023-03-17T06:18:16Z) - Quantifying & Modeling Multimodal Interactions: An Information
Decomposition Framework [89.8609061423685]
We propose an information-theoretic approach to quantify the degree of redundancy, uniqueness, and synergy relating input modalities with an output task.
To validate PID estimation, we conduct extensive experiments on both synthetic datasets where the PID is known and on large-scale multimodal benchmarks.
We demonstrate their usefulness in (1) quantifying interactions within multimodal datasets, (2) quantifying interactions captured by multimodal models, (3) principled approaches for model selection, and (4) three real-world case studies.
arXiv Detail & Related papers (2023-02-23T18:59:05Z) - MultiBench: Multiscale Benchmarks for Multimodal Representation Learning [87.23266008930045]
MultiBench is a systematic and unified benchmark spanning 15 datasets, 10 modalities, 20 prediction tasks, and 6 research areas.
It provides an automated end-to-end machine learning pipeline that simplifies and standardizes data loading, experimental setup, and model evaluation.
It introduces impactful challenges for future research, including robustness to large-scale multimodal datasets and robustness to realistic imperfections.
arXiv Detail & Related papers (2021-07-15T17:54:36Z) - Survey on Deep Multi-modal Data Analytics: Collaboration, Rivalry and
Fusion [6.225190099424806]
Multi-modal or multi-view data has surged as a major stream for big data, where each modal/view encodes individual property of data objects.
Most of the existing state-of-the-art focused on how to fuse the energy or information from multi-modal spaces to deliver a superior performance.
Deep neural networks have exhibited as a powerful architecture to well capture the nonlinear distribution of high-dimensional multimedia data.
arXiv Detail & Related papers (2020-06-15T06:42:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.