What are You Looking at? Modality Contribution in Multimodal Medical Deep Learning Methods
- URL: http://arxiv.org/abs/2503.01904v1
- Date: Fri, 28 Feb 2025 12:39:39 GMT
- Title: What are You Looking at? Modality Contribution in Multimodal Medical Deep Learning Methods
- Authors: Christian Gapp, Elias Tappeiner, Martin Welk, Karl Fritscher, Elke Ruth Gizewski, Rainer Schubert,
- Abstract summary: We present a method that measures the importance of each modality in a dataset for the model to fulfill its task.<n>We found that some networks have modality preferences that tend to unimodal collapses, while some datasets are imbalanced from the ground up.<n>With our method we make a crucial contribution to the field of interpretability in deep learning based multimodal research.
- Score: 0.13194391758295113
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Purpose High dimensional, multimodal data can nowadays be analyzed by huge deep neural networks with little effort. Several fusion methods for bringing together different modalities have been developed. Particularly, in the field of medicine with its presence of high dimensional multimodal patient data, multimodal models characterize the next step. However, what is yet very underexplored is how these models process the source information in detail. Methods To this end, we implemented an occlusion-based both model and performance agnostic modality contribution method that quantitatively measures the importance of each modality in the dataset for the model to fulfill its task. We applied our method to three different multimodal medical problems for experimental purposes. Results Herein we found that some networks have modality preferences that tend to unimodal collapses, while some datasets are imbalanced from the ground up. Moreover, we could determine a link between our metric and the performance of single modality trained nets. Conclusion The information gain through our metric holds remarkable potential to improve the development of multimodal models and the creation of datasets in the future. With our method we make a crucial contribution to the field of interpretability in deep learning based multimodal research and thereby notably push the integrability of multimodal AI into clinical practice. Our code is publicly available at https://github.com/ChristianGappGit/MC_MMD.
Related papers
- Continual Multimodal Contrastive Learning [70.60542106731813]
Multimodal contrastive learning (MCL) advances in aligning different modalities and generating multimodal representations in a joint space.
However, a critical yet often overlooked challenge remains: multimodal data is rarely collected in a single process, and training from scratch is computationally expensive.
In this paper, we formulate CMCL through two specialized principles of stability and plasticity.
We theoretically derive a novel optimization-based method, which projects updated gradients from dual sides onto subspaces where any gradient is prevented from interfering with the previously learned knowledge.
arXiv Detail & Related papers (2025-03-19T07:57:08Z) - MIND: Modality-Informed Knowledge Distillation Framework for Multimodal Clinical Prediction Tasks [50.98856172702256]
We propose the Modality-INformed knowledge Distillation (MIND) framework, a multimodal model compression approach.<n>MIND transfers knowledge from ensembles of pre-trained deep neural networks of varying sizes into a smaller multimodal student.<n>We evaluate MIND on binary and multilabel clinical prediction tasks using time series data and chest X-ray images.
arXiv Detail & Related papers (2025-02-03T08:50:00Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.<n>Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.<n>Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.<n>Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - Promoting cross-modal representations to improve multimodal foundation models for physiological signals [3.630706646160043]
We use a masked autoencoding objective to pretrain a multimodal model.
We show that the model learns representations that can be linearly probed for a diverse set of downstream tasks.
We argue that explicit methods for inducing cross-modality may enhance multimodal pretraining strategies.
arXiv Detail & Related papers (2024-10-21T18:47:36Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
This paper presents the Hybrid Early-fusion Attention Learning Network (HEALNet), a flexible multimodal fusion architecture.
We conduct multimodal survival analysis on Whole Slide Images and Multi-omic data on four cancer datasets from The Cancer Genome Atlas (TCGA)
HEALNet achieves state-of-the-art performance compared to other end-to-end trained fusion models.
arXiv Detail & Related papers (2023-11-15T17:06:26Z) - Quantifying & Modeling Multimodal Interactions: An Information
Decomposition Framework [89.8609061423685]
We propose an information-theoretic approach to quantify the degree of redundancy, uniqueness, and synergy relating input modalities with an output task.
To validate PID estimation, we conduct extensive experiments on both synthetic datasets where the PID is known and on large-scale multimodal benchmarks.
We demonstrate their usefulness in (1) quantifying interactions within multimodal datasets, (2) quantifying interactions captured by multimodal models, (3) principled approaches for model selection, and (4) three real-world case studies.
arXiv Detail & Related papers (2023-02-23T18:59:05Z) - Multi-objective optimization determines when, which and how to fuse deep
networks: an application to predict COVID-19 outcomes [1.8351254916713304]
We present a novel approach to optimize the setup of a multimodal end-to-end model.
We test our method on the AIforCOVID dataset, attaining state-of-the-art results.
arXiv Detail & Related papers (2022-04-07T23:07:33Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - High-Modality Multimodal Transformer: Quantifying Modality & Interaction
Heterogeneity for High-Modality Representation Learning [112.51498431119616]
This paper studies efficient representation learning for high-modality scenarios involving a large set of diverse modalities.
A single model, HighMMT, scales up to 10 modalities (text, image, audio, video, sensors, proprioception, speech, time-series, sets, and tables) and 15 tasks from 5 research areas.
arXiv Detail & Related papers (2022-03-02T18:56:20Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.