Foundations of Multisensory Artificial Intelligence
- URL: http://arxiv.org/abs/2404.18976v1
- Date: Mon, 29 Apr 2024 14:45:28 GMT
- Title: Foundations of Multisensory Artificial Intelligence
- Authors: Paul Pu Liang,
- Abstract summary: This thesis aims to advance the machine learning foundations of multisensory AI.
In the first part, we present a theoretical framework formalizing how modalities interact with each other to give rise to new information for a task.
In the second part, we study the design of practical multimodal foundation models that generalize over many modalities and tasks.
- Score: 32.56967614091527
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building multisensory AI systems that learn from multiple sensory inputs such as text, speech, video, real-world sensors, wearable devices, and medical data holds great promise for impact in many scientific areas with practical benefits, such as in supporting human health and well-being, enabling multimedia content processing, and enhancing real-world autonomous agents. By synthesizing a range of theoretical frameworks and application domains, this thesis aims to advance the machine learning foundations of multisensory AI. In the first part, we present a theoretical framework formalizing how modalities interact with each other to give rise to new information for a task. These interactions are the basic building blocks in all multimodal problems, and their quantification enables users to understand their multimodal datasets, design principled approaches to learn these interactions, and analyze whether their model has succeeded in learning. In the second part, we study the design of practical multimodal foundation models that generalize over many modalities and tasks, which presents a step toward grounding large language models to real-world sensory modalities. We introduce MultiBench, a unified large-scale benchmark across a wide range of modalities, tasks, and research areas, followed by the cross-modal attention and multimodal transformer architectures that now underpin many of today's multimodal foundation models. Scaling these architectures on MultiBench enables the creation of general-purpose multisensory AI systems, and we discuss our collaborative efforts in applying these models for real-world impact in affective computing, mental health, cancer prognosis, and robotics. Finally, we conclude this thesis by discussing how future work can leverage these ideas toward more general, interactive, and safe multisensory AI.
Related papers
- An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
The next generation of machine learning systems must be adept at perceiving and interacting with the physical world.
sensory data from motion, thermal, geolocation, depth, wireless signals, video, and audio are increasingly used to model the states of physical environments.
Existing efforts are often specialized to a single sensory modality or prediction task.
This paper proposes MultiIoT, the most expansive and unified IoT benchmark to date, encompassing over 1.15 million samples from 12 modalities and 8 real-world tasks.
arXiv Detail & Related papers (2023-11-10T18:13:08Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
This paper provides an overview of the computational and theoretical foundations of multimodal machine learning.
We propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification.
Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches.
arXiv Detail & Related papers (2022-09-07T19:21:19Z) - Multimodal foundation models are better simulators of the human brain [65.10501322822881]
We present a newly-designed multimodal foundation model pre-trained on 15 million image-text pairs.
We find that both visual and lingual encoders trained multimodally are more brain-like compared with unimodal ones.
arXiv Detail & Related papers (2022-08-17T12:36:26Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z) - Towards open and expandable cognitive AI architectures for large-scale
multi-agent human-robot collaborative learning [5.478764356647437]
A novel cognitive architecture for multi-agent LfD robotic learning is introduced, targeting to enable the reliable deployment of open, scalable and expandable robotic systems.
The conceptualization relies on employing multiple AI-empowered cognitive processes that operate at the edge nodes of a network of robotic platforms.
The applicability of the proposed framework is explained using an example of a real-world industrial case study.
arXiv Detail & Related papers (2020-12-15T09:49:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.